Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Article En | MEDLINE | ID: mdl-38794199

Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.

2.
Commun Chem ; 7(1): 83, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609466

Characterization of biopolymers in both dry and weakly hydrated amorphous states has implications for the pharmaceutical industry since it provides understanding of the effect of lyophilisation on stability and biological activity. Atomistic Molecular Dynamics (MD) simulations probe structural and dynamical features related to system functionality. However, while simulations in homogenous aqueous environments are routine, dehydrated model assemblies are a challenge with systems investigated in-silico needing careful consideration; simulated systems potentially differing markedly despite seemingly negligible changes in procedure. Here we propose an in-silico protocol to model proteins in lyophilised and weakly hydrated amorphous states that is both more experimentally representative and routinely applicable. Since the outputs from MD align directly with those accessed by neutron scattering, the efficacy of the simulation protocol proposed is shown by validating against experimental neutron data for apoferritin and insulin. This work also highlights that without cooperative experimental and simulative data, development of simulative procedures using MD alone would prove most challenging.

3.
Gels ; 9(7)2023 Jun 23.
Article En | MEDLINE | ID: mdl-37504388

One of the main issues in the cultural heritage field of restoration chemistry is the identification of greener and more effective methods for the wet cleaning of paper artefacts, which serve as witnesses to human history and custodians of cultural values. In this context, we propose a biocompatible method to perform wet cleaning on paper based on the use of 1 MHz ultrasound in combination with water-dispersed polyvinyl alcohol microbubbles (PVAMBs), followed by dabbing with PVA-based hydrogel. This method can be applied to both old and new papers. FTIR spectroscopy, X-ray diffraction, HPLC analysis, pH measurements and tensile tests were performed on paper samples, to assess the efficacy of the cleaning system. According to the results, ultrasound-activated PVAMB application allows for an efficient interaction with rough and porous cellulose paper profiles, promoting the removal of cellulose degradation byproducts, while the following hydrogel dabbing treatment guarantees the removal of cleaning materials residues. Moreover, the results also pointed out that after the treatment no thermal or mechanical damages had affected the paper. In conclusion, the readability of these kinds of artifacts can be improved without causing an alteration of their structural properties, while mitigating the risk of ink diffusion.

4.
Biochem Biophys Res Commun ; 671: 124-131, 2023 09 03.
Article En | MEDLINE | ID: mdl-37300942

BACKGROUND: In the surgical management of glioblastoma, a highly aggressive and incurable type of brain cancer, identification and treatment of residual tissue is the most common site of disease recurrence. Monitoring and localized treatment are achieved with engineered microbubbles (MBs) by combining ultrasound and fluorescence imaging with actively targeted temozolomide (TMZ) delivery. METHODS: The MBs were conjugated with a near-infrared fluorescence probe CF790, cyclic pentapeptide bearing the RGD sequence and a carboxyl-temozolomide, TMZA. The efficiency of adhesion to HUVEC cells was assessed in vitro in realistic physiological conditions of shear rate and vascular dimensions. Cytotoxicity of TMZA-loaded MBs on U87 MG cells and IC50 were assessed by MTT tests. RESULTS: We report on the design of injectable poly(vinyl alcohol) echogenic MBs designed as a platform with active targeting ability to tumor tissues, by tethering on the surface a ligand having the tripeptide sequence, RGD. The biorecognition of RGD-MBs onto HUVEC cells is quantitatively proved. Efficient NIR emission from the CF790-decorated MBs was successfully detected. The conjugation on the MBs surface of a specific drug as TMZ is achieved. The pharmacological activity of the coupled-to-surface drug is preserved by controlling the reaction conditions. CONCLUSIONS: We present an improved formulation of PVA-MBs to achieve a multifunctional device with adhesion ability, cytotoxicity on glioblastoma cells and supporting imaging.


Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Temozolomide/therapeutic use , Precision Medicine , Cell Line, Tumor , Neoplasm Recurrence, Local , Glioma/therapy , Glioma/drug therapy , Optical Imaging , Oligopeptides/therapeutic use , Microbubbles
5.
Pharmaceutics ; 15(1)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36678846

This proof-of-concept study lays the foundations for the development of a delivery strategy for radioactive lanthanides, such as Yttrium-90, against recurrent glioblastoma. Our appealing hypothesis is that by taking advantage of the combination of biocompatible polyvinyl alcohol (PVA) microbubbles (MBs) and endovascular radiopharmaceutical infusion, a minimally invasive selective radioembolization can be achieved, which can lead to personalized treatments limiting off-target toxicities for the normal brain. The results show the successful formulation strategy that turns the ultrasound contrast PVA-shelled microbubbles into a microdevice, exhibiting good loading efficiency of Yttrium cargo by complexation with a bifunctional chelator. The selective targeting of Yttrium-loaded MBs on the glioblastoma-associated tumor endothelial cells can be unlocked by the biorecognition between the overexpressed αVß3 integrin and the ligand Cyclo(Arg-Gly-Asp-D-Phe-Lys) at the PVA microbubble surface. Hence, we show the suitability of PVA MBs as selective Y-microdevices for in situ injection via the smallest (i.e., 1.2F) neurointerventional microcatheter available on the market and the accumulation of PVA MBs on the HUVEC cell line model of integrin overexpression, thereby providing ~6 × 10-15 moles of Y90 per HUVEC cell. We further discuss the potential impact of using such versatile PVA MBs as a new therapeutic chance for treating glioblastoma multiforme recurrence.

6.
Sci Rep ; 12(1): 8012, 2022 05 14.
Article En | MEDLINE | ID: mdl-35568710

Methods allowing for in situ dosimetry and range verification are essential in radiotherapy to reduce the safety margins required to account for uncertainties introduced in the entire treatment workflow. This study suggests a non-invasive dosimetry concept for carbon ion radiotherapy based on phase-change ultrasound contrast agents. Injectable nanodroplets made of a metastable perfluorobutane (PFB) liquid core, stabilized with a crosslinked poly(vinylalcohol) shell, are vaporized at physiological temperature when exposed to carbon ion radiation (C-ions), converting them into echogenic microbubbles. Nanodroplets, embedded in tissue-mimicking phantoms, are exposed at 37 °C to a 312 MeV/u clinical C-ions beam at different doses between 0.1 and 4 Gy. The evaluation of the contrast enhancement from ultrasound imaging of the phantoms, pre- and post-irradiation, reveals a significant radiation-triggered nanodroplets vaporization occurring at the C-ions Bragg peak with sub-millimeter shift reproducibility and dose dependency. The specific response of the nanodroplets to C-ions is further confirmed by varying the phantom position, the beam range, and by performing spread-out Bragg peak irradiation. The nanodroplets' response to C-ions is influenced by their concentration and is dose rate independent. These early findings show the ground-breaking potential of polymer-shelled PFB nanodroplets to enable in vivo carbon ion dosimetry and range verification.


Carbon , Polymers , Ions , Reproducibility of Results , Ultrasonography
7.
Ultrasound Med Biol ; 48(1): 149-156, 2022 01.
Article En | MEDLINE | ID: mdl-34629191

The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation. In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irradiation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback. In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37°C and 50°C. Differential image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interaction between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with the stopping distribution of protons (at 50°C) or secondary particles (at both temperatures). Furthermore, a linear relationship between the vaporization count and the number of incoming protons was observed. These results indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verification and dosimetry.


Microbubbles , Protons , Phantoms, Imaging , Ultrasonography , Volatilization
8.
Sci Rep ; 11(1): 19033, 2021 09 24.
Article En | MEDLINE | ID: mdl-34561481

Keratinocytes, the main cell type of the skin, are one of the most exposed cells to environmental factors, providing a first defence barrier for the host and actively participating in immune response. In fact, keratinocytes express pattern recognition receptors that interact with pathogen associated molecular patterns and damage associated molecular patterns, leading to the production of cytokines and chemokines, including interleukin (IL)-6. Herein, we investigated whether mechanical energy transported by low intensity ultrasound (US) could generate a mechanical stress able to induce the release of inflammatory cytokine such IL-6 in the human keratinocyte cell line, HaCaT. The extensive clinical application of US in both diagnosis and therapy suggests the need to better understand the related biological effects. Our results point out that US promotes the overexpression and secretion of IL-6, associated with the activation of nuclear factor-κB (NF-κB). Furthermore, we observed a reduced cell viability dependent on exposure parameters together with alterations in membrane permeability, paving the way for further investigating the molecular mechanisms related to US exposure.


Gene Expression/radiation effects , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Keratinocytes/metabolism , Ultrasonic Waves/adverse effects , Cell Membrane Permeability/radiation effects , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , HaCaT Cells , Humans , Interleukin-6/genetics , NF-kappa B/metabolism , Stress, Mechanical
9.
Phys Med ; 89: 232-242, 2021 Sep.
Article En | MEDLINE | ID: mdl-34425514

PURPOSE: We investigate the vaporization of phase-change ultrasound contrast agents using photon radiation for dosimetry perspectives in radiotherapy. METHODS: We studied superheated perfluorobutane nanodroplets with a crosslinked poly(vinylalcohol) shell. The nanodroplets' physico-chemical properties, and their acoustic transition have been assessed firstly. Then, poly(vinylalcohol)-perfluorobutane nanodroplets were dispersed in poly(acrylamide) hydrogel phantoms and exposed to a photon beam. We addressed the effect of several parameters influencing the nanodroplets radiation sensitivity (energy/delivered dose/dose rate/temperature). The nanodroplets-vaporization post-photon exposure was evaluated using ultrasound imaging at a low mechanical index. RESULTS: Poly(vinylalcohol)-perfluorobutane nanodroplets show a good colloidal stability over four weeks and remain highly stable at temperatures up to 78 °C. Nanodroplets acoustically-triggered phase transition leads to microbubbles with diameters <10 µm and an activation threshold of mechanical index = 0.4, at 7.5 MHz. A small number of vaporization events occur post-photon exposure (6MV/15MV), at doses between 2 and 10 Gy, leading to ultrasound contrast increase up to 60% at RT. The nanodroplets become efficiently sensitive to photons when heated to a temperature of 65 °C (while remaining below the superheat limit temperature) during irradiation. CONCLUSIONS: Nanodroplets' core is linked to the degree of superheat in the metastable state and plays a critical role in determining nanodroplet' stability and sensitivity to ionizing radiation, requiring higher or lower linear energy transfer vaporization thresholds. While poly(vinylalcohol)-perfluorobutane nanodroplets could be slightly activated by photons at ambient conditions, a good balance between the degree of superheat and stability will aim at optimizing the design of nanodroplets to reach high sensitivity to photons at physiological conditions.


Nanoparticles , Photons , Contrast Media , Microbubbles , Ultrasonography , Volatilization
10.
ACS Appl Mater Interfaces ; 13(20): 24207-24217, 2021 May 26.
Article En | MEDLINE | ID: mdl-33988378

In this work, we shed new light on ultrasound contrast agents applied to the field of cultural heritage as an invaluable fine-tune cleaning tool for paper artworks. In this context, one of the primary and challenging issues is the removal of modern adhesives from paper artifacts. Modern adhesives are synthetic polymers whose presence enhances paper degradation and worsens its optical features. A thorough analytical and high-spatial-resolution combined study was successfully performed to test the capability of poly(vinyl alcohol)-based microbubbles stimulated by a proper noninvasive 1 MHz ultrasound field exposure in removing these adhesives from paper surfaces, in the absence of volatile invasive and toxic chemicals and without damaging paper and/or leaving residues. We demonstrate that poly(vinyl alcohol)-shelled microbubbles are suitable for interacting with paper surfaces, targeting and boosting in a few minutes the nondamaging removal of adhesive particles from paper samples thanks to their peculiar shell composition together with their ultrasound dynamics.

11.
J Vis Exp ; (169)2021 03 14.
Article En | MEDLINE | ID: mdl-33779605

Significant improvement of phase-change perfluorocarbon microdroplets (MDs) in the vast theranostic scenario passes through the optimization of the MDs composition with respect to synthesis efficiency, stability, and drug delivery capability. To this aim, decafluoropentane (DFP) MDs stabilized by a shell of dimethyldioctadecylammonium bromide (DDAB) cationic surfactant were designed. A high concentration of DDAB-MDs was readily obtained within a few seconds by pulsed high-power insonation, resulting in low polydisperse 1 µm size droplets. Highly positive ζ-potential, together with a long, saturated hydrocarbon chains of the DDAB shell, are key factors to stabilize the droplet and the drug cargo therein. The high affinity of the DDAB shell with cell plasma membrane allows for localized chemotherapeutics delivery by increasing the drug concentration at the tumor cell interface and boosting the uptake. This would turn DDAB-MDs into a relevant drug delivery tool exhibiting high antitumor activity at very low drug doses. In this work, the efficacy of such an approach is shown to dramatically improve the effect of doxorubicin against 3D spheroids of mammalian tumor cells, MDA-MB-231. The use of three-dimensional (3D) cell cultures developed in the form of multicellular tumor spheroids (i.e., densely packed cells in a spherical shape) has numerous advantages compared to 2D cell cultures: in addition to have the potential to bridge the gap between conventional in vitro studies and animal testing, it will improve the ability to perform more predictive in vitro screening assays for preclinical drug development or evaluate the potential of off-label drugs and new co-targeting strategies.


Cell Culture Techniques/methods , Drug Delivery Systems/methods , Quaternary Ammonium Compounds/metabolism , Animals , Humans
12.
Med Phys ; 48(4): 1983-1995, 2021 Apr.
Article En | MEDLINE | ID: mdl-33587754

PURPOSE: Despite the physical benefits of protons over conventional photon radiation in cancer treatment, range uncertainties impede the ability to harness the full potential of proton therapy. While monitoring the proton range in vivo could reduce the currently adopted safety margins, a routinely applicable range verification technique is still lacking. Recently, phase-change nanodroplets were proposed for proton range verification, demonstrating a reproducible relationship between the proton range and generated ultrasound contrast after radiation-induced vaporization at 25°C. In this study, previous findings are extended with proton irradiations at different temperatures, including the physiological temperature of 37°C, for a novel nanodroplet formulation. Moreover, the potential to modulate the linear energy transfer (LET) threshold for vaporization by varying the degree of superheat is investigated, where the aim is to demonstrate vaporization of nanodroplets directly by primary protons. METHODS: Perfluorobutane nanodroplets with a shell made of polyvinyl alcohol (PVA-PFB) or 10,12-pentacosadyinoic acid (PCDA-PFB) were dispersed in polyacrylamide hydrogels and irradiated with 62 MeV passively scattered protons at temperatures of 37°C and 50°C. Nanodroplet transition into echogenic microbubbles was assessed using ultrasound imaging (gray value and attenuation analysis) and optical images. The proton range was measured independently and compared to the generated contrast. RESULTS: Nanodroplet design proved crucial to ensure thermal stability, as PVA-shelled nanodroplets dramatically outperformed their PCDA-shelled counterpart. At body temperature, a uniform radiation response proximal to the Bragg peak is attributed to nuclear reaction products interacting with PVA-PFB nanodroplets, with the 50% drop in ultrasound contrast being 0.17 mm ± 0.20 mm (mean ± standard deviation) in front of the proton range. Also at 50°C, highly reproducible ultrasound contrast profiles were obtained with shifts of -0.74 mm ± 0.09 mm (gray value analysis), -0.86 mm ± 0.04 mm (attenuation analysis) and -0.64 mm ± 0.29 mm (optical analysis). Moreover, a strong contrast enhancement was observed near the Bragg peak, suggesting that nanodroplets were sensitive to primary protons. CONCLUSIONS: By varying the degree of superheat of the nanodroplets' core, one can modulate the intensity of the generated ultrasound contrast. Moreover, a submillimeter reproducible relationship between the ultrasound contrast and the proton range was obtained, either indirectly via the visualization of secondary reaction products or directly through the detection of primary protons, depending on the degree of superheat. The potential of PVA-PFB nanodroplets for in vivo proton range verification was confirmed by observing a reproducible radiation response at physiological temperature, and further studies aim to assess the nanodroplets' performance in a physiological environment. Ultimately, cost-effective online or offline ultrasound imaging of radiation-induced nanodroplet vaporization could facilitate the reduction of safety margins in treatment planning and enable adaptive proton therapy.


Proton Therapy , Protons , Contrast Media , Microbubbles , Ultrasonography
13.
Front Chem ; 9: 804893, 2021.
Article En | MEDLINE | ID: mdl-35174141

An easy and fast method to achieve chiral porphyrin films on glass is herein reported. The on-surface formation of organized supramolecular architectures with distinctive and remarkable chiroptical features strictly depends on the macrocycles used, the solvent chosen for the casting deposition, and most importantly, on the roughness of the glass slide. Dynamic light scattering studies performed on 10-4-10-6 M porphyrin solutions revealed the presence of small porphyrin aggregates, whose size and number increase depending on the initial concentration. Once transferred on surface, these protoaggregates act as nucleation seeds for the following, self-assembling into larger structures upon solvent evaporation, with a process driven by a fine balance between intermolecular and molecule-substrate interactions. The described method represents a straightforward way to fabricate porphyrin-based chiral surfaces onto a transparent and economic substrate in few minutes. The results obtained can be particularly promising for the development of sensors based on stereoselective optical active films, targeting the detection of chiral analytes of practical relevance, such as the so-called emerging pollutants released in the environment from agrochemical, food, and pharmaceutical manufacturing.

14.
Gels ; 6(4)2020 Oct 16.
Article En | MEDLINE | ID: mdl-33081416

Poly(N-isopropylacrylamide) (PNIPAM) hydrogel microparticles with different core-shell morphologies have been designed, while maintaining an unvaried chemical composition: a morphology with (i) an un-crosslinked core with a crosslinked shell of PNIPAM chains and (ii) PNIPAM chains crosslinked to form the core with a shell consisting of tethered un-crosslinked PNIPAM chains to the core. Both morphologies with two different degrees of crosslinking have been assessed by confocal microscopy and tested with respect to their temperature responsivity and deformation by applying an osmotic stress. The thermal and mechanical behavior of these architectures have been framed within a Flory-Rehner modified model in order to describe the microgel volume shrinking occurring as response to a temperature increase or an osmotic perturbation. This study provides a background for assessing to what extent the mechanical features of the microgel particle surface affect the interactions occurring at the interface of a microgel particle with a cell, in addition to the already know ligand/receptor interaction. These results have direct implications in triggering a limited phagocytosis of microdevices designed as injectable drug delivery systems.

15.
J Colloid Interface Sci ; 580: 419-428, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32698085

We realise an antibacterial nanomaterial based on the self-limited assembly of patchy plasmonic colloids, obtained by adsorption of lysozyme to gold nanoparticles. The possibility of selecting the size of the assemblies within several hundred nanometres allows for tuning their optical response in a wide range of frequencies from visible to near infrared. We also demonstrate an aggregation-dependent modulation of the catalytic activity, which results in an enhancement of the antibacterial performances for assemblies of the proper size. The gained overall control on structure, optical properties and biological activity of such nanomaterial paves the way for the development of novel antibacterial nanozymes with promising applications in treating multi drug resistant bacteria.


Metal Nanoparticles , Nanostructures , Anti-Bacterial Agents/pharmacology , Colloids , Gold
16.
J Colloid Interface Sci ; 578: 758-767, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32574909

Adhesion is a key process when ultrasound contrast agents, i.e. microbubbles, approach pathological tissues. A way to accomplish tumour targeting is to tether surface engineered microbubbles to endothelial cells of the up-regulated vascularization of cancer tissues. This can be achieved by coupling the microbubbles surface with the Arginine-Glycine-Aspartate, RGD, sequence. Such molecule interacts with the integrin receptors placed on the endothelial cells. Stability and trajectories of RGD modified lipid shelled MBs have been analysed in vitro using microchannels coated with human umbilical vein endothelial cells, HUVEC. In the microchannels realistic conditions, close to the physiological ones, were reproduced replicating shear rate, roughness comparable to the endothelium and channel size mimicking the postcapillary venules. In these conditions, the analysis of the trajectories close to the walls highlights a substantial difference between the modified MBs and the plain ones. Moreover, MBs adhesion has dynamic features recalling the motion of neutrophils engaged near the substrate such as rolling, translations and transient detachments. These findings are useful for the optimization of in vivo imaging and targeting functions.


Endothelial Cells , Microbubbles , Adhesives , Contrast Media , Humans , Ultrasonography
17.
Colloids Surf B Biointerfaces ; 188: 110777, 2020 Apr.
Article En | MEDLINE | ID: mdl-32004905

Hydrogel-based cleaning of paper artworks is an increasingly widespread process in the cultural heritage field. However, the search for tuned (compatible, highly retentive and not perishable) hydrogels is a challenging open question. In this paper, a complete characterization of chemical hydrogels based on polyvinyl alcohol (PVA) crosslinked with telechelic PVA and their remarkable performances as gels for cleaning paper artworks are reported. The rheological properties, porosity, water content of these gels were determined and analyzed as a function of the components concentration during synthesis. Due mechanical and retentive properties, the reported gels are optimum candidates for paper cleaning applications. The efficacy of these PVA-based gels has been demonstrated applying them on the surface of the sheets of several paper artworks, and characterizing the samples before and after the cleaning process by means of a multidisciplinary approach involving spectroscopic and chromatographic tests.


Biocompatible Materials/chemistry , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemical synthesis , Hydrogen-Ion Concentration , Materials Testing , Particle Size , Polyvinyl Alcohol/chemical synthesis , Surface Properties
18.
Phys Med Biol ; 65(6): 065013, 2020 03 23.
Article En | MEDLINE | ID: mdl-32045902

Technologies enabling in vivo range verification during proton therapy are actively sought as a means to reduce the clinical safety margins currently adopted to avoid tumor underdosage. In this contribution, we applied the semi-empirical theory of radiation-induced vaporization of superheated liquids to coated nanodroplets. Nanodroplets are injectable phase-change contrast agents that can vaporize into highly echogenic microbubbles to provide contrast in ultrasound images. We exposed nanodroplet dispersions in aqueous phantoms to monoenergetic proton beams of varying energies and doses. Ultrasound imaging of the phantoms revealed that radiation-induced droplet vaporization occurred in regions proximal to the proton Bragg peak. A statistically significant increase in contrast was observed in irradiated regions for doses as low as 2 Gy and found to be proportional to the proton fluence. The absence of enhanced response in the vicinity of the Bragg peak, combined with theoretical considerations, suggest that droplet vaporization is induced by high linear energy transfer (LET) recoil ions produced by nuclear reactions with incoming protons. Vaporization profiles were compared to non-elastic cross sections and LET characteristics of oxygen recoils. Shifts between the ultrasound image contrast drop and the expected proton range showed a sub-millimeter reproducibility. These early findings confirm the potential of superheated nanodroplets as a novel tool for proton range verification.


Nanotechnology , Proton Therapy , Radiotherapy, Image-Guided/methods , Feasibility Studies , Humans , Linear Energy Transfer , Monte Carlo Method , Phantoms, Imaging , Reproducibility of Results , Ultrasonography
19.
ACS Omega ; 4(3): 5526-5533, 2019 Mar 31.
Article En | MEDLINE | ID: mdl-31497678

Real-time intraoperative imaging for brain tumor surgery is crucial for achieving complete resection. We are developing novel lipid-based microbubbles (MBs), engineered with specific ligands, which are able to interact with the integrins overexpressed in the endothelium of the brain tumor vasculature. These MBs are designed to visualize the tumor and to carry therapeutic molecules into the tumor tissue, preserving the ultrasound acoustic properties of the starting plain lipid MBs. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of plain MBs and MBs engineered for targeting and near-infrared fluorescence visualization at two time-points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-ICG, (3) MB-RGD, and (4) MB-ICG-RGD]. No mortality occurred during the 7-day study period in any of the dosing groups. All animals demonstrated a body weight gain during the study period. Minor, mostly reversible changes in hematological and biochemical analysis were observed in some of the treated animals. All changes were reversible by the 7-day time-point. Histopathology examination in the high-dose animals showed development of foreign body granulomatous inflammation. We concluded that the low-dose tested items appear to be safe. The results allow for proceeding to clinical testing of the product.

20.
ACS Omega ; 4(8): 13371-13381, 2019 Aug 20.
Article En | MEDLINE | ID: mdl-31460465

Maximal resection of intrinsic brain tumors is a major prognostic factor for survival. Real-time intraoperative imaging tools, including ultrasound (US), are crucial for maximal resection of such tumors. Microbubbles (MBs) are clinically used in daily practice as a contrast agent for ultrasound and can be further developed to serve combined therapeutic and diagnostic purposes. To achieve this goal, we have developed novel MBs conjugated to specific ligands to receptors which are overexpressed in brain tumors. These MBs are designed to target a tumor tissue, visualize it, and deliver therapeutic molecules into it. The objective of this study was to assess the biodistribution of the test items: We used MBs labeled with indocyanine green (MB-ICG) for visualization and MBs conjugated to a cyclic molecule containing the tripeptide Arg-Gly-Asp (RGD) labeled with ICG (MB-RGD-ICG) to target brain tumor integrins as the therapeutic tools. Male Sprague Dawley rats received a single dose of each MB preparation. The identification of the MB in various organs was monitored by fluorescence microscopy in anesthetized animals as well as real-time US for brain imaging. Equally sized control groups under identical conditions were used in this study. One control group was used to establish fluorescence background conditions (ICG), and two control groups were used to test autofluorescence from the test items (MBs and MB-RGD). ICG with or without MBs (naked or RGD-modified) was detected in the brain vasculature and also in other organs. The pattern, duration, and intensity of the fluorescence signal could not be differentiated between animals treated with ICG alone and animals treated with microbubbles MBs-ICG or MBs-RGD-ICG. Following MB injection, either naked or combined with RGD, there was a sharp rise in the Doppler signal within seconds of injection in the brain. The signal was mainly located at the choroid plexus, septum pellucidum, and the meninges of the brain. The signal subsided within a few minutes. Injection of saline or ICG alone to respective animals did not result in a similar raised signal. Following a single intravenous administration of MB-ICG and MB-RGD-ICG to rats, the MBs were found to be effectively present in the brain.

...