Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 22974, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151503

RESUMEN

Placenta-derived mesenchymal stem cells (PL-MSCs) have therapeutic potential in various clinical contexts due to their regenerative and immunomodulatory properties. However, with increasing age or extensive in vitro culture, their viability and function are gradually lost, thus restricting their therapeutic application. The primary cause of this deterioration is oxidative injury from free radicals. Therefore, enhancing cell viability and restoring cellular repair mechanisms of PL-MSCs in an oxidative stress environment are crucial in this context. Fucoxanthin, a carotenoid derived from brown seaweed, demonstrates antioxidant activity by increasing the production of antioxidant enzymes and lowering the levels of reactive oxygen species (ROS). This study aimed to determine whether fucoxanthin protects PL-MSCs from hydrogen peroxide (H2O2)-induced oxidative stress. After characterization, PL-MSCs were co-treated with fucoxanthin and H2O2 for 24 h (co-treatment) or pre-treated with fucoxanthin for 24 h followed by H2O2 for 24 h (pre-treatment). The effects of fucoxanthin on cell viability and proliferation were examined using an MTT assay. The expression of antioxidant enzymes, PI3K/Akt/Nrf-2 and intracellular ROS production were investigated in fucoxanthin-treated PL-MSCs compared to the untreated group. The gene expression and involvement of specific pathways in the cytoprotective effect of fucoxanthin were investigated by high-throughput NanoString nCounter analysis. The results demonstrated that co-treatment and pre-treatment with fucoxanthin restored the viability and proliferative capacity of PL-MSCs. Fucoxanthin treatment increased the expression of antioxidant enzymes in PL-MSCs cultured under oxidative stress conditions and decreased intracellular ROS accumulation. Markedly, fucoxanthin treatment could restore PI3K/Akt/Nrf-2 expression in H2O2-treated PL-MSCs. High-throughput analysis revealed up-regulation of genes involved in cell survival pathways, including cell cycle and proliferation, DNA damage repair pathways, and down-regulation of genes in apoptosis and autophagy pathways. This study demonstrated that fucoxanthin protects and rescues PL-MSCs from oxidative stress damage through the PI3K/Akt/Nrf-2 pathway. Our data provide the supporting evidence for the use of fucoxanthin as an antioxidant cytoprotective agent to improve the viability and proliferation capacity of PL-MSCs both in vitro and in vivo required to increase the effectiveness of MSC expansion for therapeutic applications.


Asunto(s)
Antioxidantes , Células Madre Mesenquimatosas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Apoptosis
3.
Cells ; 12(5)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36899848

RESUMEN

Cystatin C, a secreted cysteine protease inhibitor, is abundantly expressed in retinal pigment epithelium (RPE) cells. A mutation in the protein's leader sequence, corresponding to formation of an alternate variant B protein, has been linked with an increased risk for both age-related macular degeneration (AMD) and Alzheimer's disease (AD). Variant B cystatin C displays intracellular mistrafficking with partial mitochondrial association. We hypothesized that variant B cystatin C interacts with mitochondrial proteins and impacts mitochondrial function. We sought to determine how the interactome of the disease-related variant B cystatin C differs from that of the wild-type (WT) form. For this purpose, we expressed cystatin C Halo-tag fusion constructs in RPE cells to pull down proteins interacting with either the WT or variant B form, followed by identification and quantification by mass spectrometry. We identified a total of 28 interacting proteins, of which 8 were exclusively pulled down by variant B cystatin C. These included 18 kDa translocator protein (TSPO) and cytochrome B5 type B, both of which are localized to the mitochondrial outer membrane. Variant B cystatin C expression also affected RPE mitochondrial function with increased membrane potential and susceptibility to damage-induced ROS production. The findings help us to understand how variant B cystatin C differs functionally from the WT form and provide leads to RPE processes adversely affected by the variant B genotype.


Asunto(s)
Cistatina C , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Proteínas Mitocondriales/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Receptores de GABA/metabolismo
4.
Front Aging Neurosci ; 14: 1016293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408112

RESUMEN

The retinal pigment epithelium (RPE) and the choroid are ocular tissues with fundamental roles in supporting neuroretinal function. The pathogenesis of age-related macular degeneration (AMD), a leading cause of irreversible blindness for which aging is the highest risk factor is closely linked with progressive impairment of various functions of these tissues. Cellular senescence, marked by cell cycle arrest and secretion of proinflammatory factors, is known to be associated with aging and has been proposed as a potential driver of AMD. Here, we investigated the role played by intercellular communication in the RPE/choroid within the context of aging, senescence and AMD. We inferred cell-cell interactions in the RPE/choroid by applying CellChat and scDiffCom on a publicly available scRNA-seq dataset from three human donors with and without AMD. We identified age-regulated ligand and receptor genes by using limma on a separate publicly available bulk microarray dataset providing RPE/choroid samples at multiple time points. Cellular senescence was investigated by assigning a score to each cell and each sample of these scRNA-seq and microarray datasets, respectively, based on the expression of key signature genes determined by a previous senescence meta-analysis. We identified VEGF-, BMP-and tenascin-mediated pathways supporting some of the strongest cell-cell interactions between RPE cells, fibroblasts and choroidal endothelial cells and as strong intercellular communication pathways related to both aging and senescence. Their signaling strength was enhanced between subpopulations of cells having high senescence scores. Predominant ligands of these pathways were upregulated with age whereas predominant receptors were downregulated. Globally, we also observed that cells from AMD samples presented slightly bigger senescence scores than normal cells and that the senescence score positively correlated with age in bulk samples (R = 0.26, value of p < 0.01). Hence, our analysis provides novel information on RPE/choroid intercellular communication that gives insights into the connection between aging, senescence and AMD.

5.
Sci Rep ; 12(1): 13324, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922637

RESUMEN

Retinal pigment epithelium (RPE) performs essential functions for ensuring retinal homeostasis and is a key site for pathogenic changes leading to age-related macular degeneration (AMD). Compromised proteostasis in RPE results in ER stress and ER stress-dependent antioxidant, apoptosis and autophagic responses. ER stress induces the unfolded protein response (UPR) in which EIF2AK3, encoding the protein kinase RNA-like ER kinase (PERK), acts as a key regulator. Downregulated EIF2AK3 gene expression has recently been identified in AMD using human donor RPE, however the molecular mechanisms that integrate the various ER-mediated cellular pathways underpinning progressive RPE dysfunction in AMD have not been fully characterised. This study investigated the downstream effects of PERK downregulation in response to Brefeldin A (BFA)-induced ER stress in ARPE-19 cells. PERK downregulation resulted in increased ER stress and impaired apoptosis induction, antioxidant responses and autophagic flux. ARPE-19 cells were unable to efficiently induce autophagy following PERK downregulation and PERK presented a role in regulating the rate of autophagy induction. The findings support PERK downregulation as an integrative event facilitating dysregulation of RPE processes critical to cell survival known to contribute to AMD development and highlight PERK as a potential future therapeutic target for AMD.


Asunto(s)
Antioxidantes , Estrés del Retículo Endoplásmico , Antioxidantes/metabolismo , Apoptosis , Autofagia , Células Epiteliales/metabolismo , Humanos , Estrés Oxidativo , Pigmentos Retinianos/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
6.
Sci Rep ; 12(1): 11341, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790790

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Células Madre Mesenquimatosas , Apoptosis , Conductos Biliares Intrahepáticos , Línea Celular , Corion , Humanos , Factores Inmunológicos , Janus Quinasa 2 , Neutropenia , Factor de Transcripción STAT3 , Transducción de Señal
7.
Front Cell Neurosci ; 16: 786926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308121

RESUMEN

Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer's (AD) and Parkinson's diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.

8.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948253

RESUMEN

DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10-4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10-5; Δß = -11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Degeneración Macular/genética , Factores de Edad , Anciano , Envejecimiento/genética , Biomarcadores/metabolismo , Epigenómica/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Epitelio Pigmentado de la Retina/metabolismo , Fumar/efectos adversos , Fumar/genética
9.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946898

RESUMEN

Oxidative stress-induced cell damage and death of the retinal pigmented epithelium (RPE), a polarized monolayer that maintains retinal health and homeostasis, lead to the development of age-related macular degeneration (AMD). Several studies show that the naturally occurring antioxidant Lutein (Lut) can protect RPE cells from oxidative stress. However, the poor solubility and low oral bioavailability limit the potential of Lut as a therapeutic agent. In this study, lutein diglutaric acid (Lut-DG), a prodrug of Lut, was synthesized and its ability to protect human ARPE-19 cells from oxidative stress was tested compared to Lut. Both Lut and Lut-DG significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Moreover, the immunoblotting analysis indicated that both drugs exerted their protective effects by modulating phosphorylated MAPKs (p38, ERK1/2 and SAPK/JNK) and downstream molecules Bax, Bcl-2 and Cytochrome c. In addition, the enzymatic antioxidants glutathione peroxidase (GPx) and catalase (CAT) and non-enzymatic antioxidant glutathione (GSH) were enhanced in cells treated with Lut and Lut-DG. In all cases, Lut-DG was more effective than its parent drug against oxidative stress-induced damage to RPE cells. These findings highlight Lut-DG as a more potent compound than Lut with the protective effects against oxidative stress in RPE cells through the modulation of key MAPKs, apoptotic and antioxidant molecular pathways.


Asunto(s)
Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Luteína/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Catalasa/biosíntesis , Catalasa/genética , Línea Celular , Citocromos c/biosíntesis , Citocromos c/genética , Evaluación Preclínica de Medicamentos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/biosíntesis , Glutatión/genética , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Peróxido de Hidrógeno/toxicidad , Luteína/química , Luteína/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Degeneración Macular/tratamiento farmacológico , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología
10.
J Cell Mol Med ; 25(12): 5572-5585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33934486

RESUMEN

Ageing presents adverse effects on the retina and is the primary risk factor for age-related macular degeneration (AMD). We report the first RNA-seq analysis of age-related transcriptional changes in the human retinal pigment epithelium (RPE), the primary site of AMD pathogenesis. Whole transcriptome sequencing of RPE from human donors ranging in age from 31 to 93 reveals that ageing is associated with increasing transcription of main RPE-associated visual cycle genes (including LRAT, RPE65, RDH5, RDH10, RDH11; pathway enrichment BH-adjusted P = 4.6 × 10-6 ). This positive correlation is replicated in an independent set of 28 donors and a microarray dataset of 50 donors previously published. LRAT expression is positively regulated by retinoid by-products of the visual cycle (A2E and all-trans-retinal) involving modulation by retinoic acid receptor alpha transcription factor. The results substantiate a novel age-related positive feedback mechanism between accumulation of retinoid by-products in the RPE and the up-regulation of visual cycle genes.


Asunto(s)
Envejecimiento , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , RNA-Seq/métodos , Epitelio Pigmentado de la Retina/metabolismo , Transcriptoma , Vías Visuales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteínas del Ojo/genética , Humanos , Persona de Mediana Edad , Transcripción Genética
11.
Nat Commun ; 12(1): 2345, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879792

RESUMEN

Age is the most important risk factor for cancer, as cancer incidence and mortality increase with age. However, how molecular alterations in tumours differ among patients of different age remains largely unexplored. Here, using data from The Cancer Genome Atlas, we comprehensively characterise genomic, transcriptomic and epigenetic alterations in relation to patients' age across cancer types. We show that tumours from older patients present an overall increase in genomic instability, somatic copy-number alterations (SCNAs) and somatic mutations. Age-associated SCNAs and mutations are identified in several cancer-driver genes across different cancer types. The largest age-related genomic differences are found in gliomas and endometrial cancer. We identify age-related global transcriptomic changes and demonstrate that these genes are in part regulated by age-associated DNA methylation changes. This study provides a comprehensive, multi-omics view of age-associated alterations in cancer and underscores age as an important factor to consider in cancer research and clinical practice.


Asunto(s)
Envejecimiento/genética , Neoplasias/etiología , Neoplasias/genética , Factores de Edad , Envejecimiento/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Femenino , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Inestabilidad Genómica , Genómica , Humanos , Pérdida de Heterocigocidad , Masculino , Mutación , Neoplasias/metabolismo , Oncogenes , Factores de Riesgo , Transducción de Señal/genética , Secuenciación Completa del Genoma
12.
Front Cell Dev Biol ; 8: 808, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984320

RESUMEN

We report for the first time an integrated transcriptomic analysis of RPE/choroid dysfunction in AMD (mixed stages) based on combining data from publicly available microarray (GSE29801) and RNAseq (GSE135092) datasets aimed at increasing the ability and power of detection of differentially expressed genes and AMD-associated pathways. The analysis approach employed an integrating quantitative method designed to eliminate bias among different transcriptomic studies. The analysis highlighted 764 meta-genes (366 downregulated and 398 upregulated) in macular AMD RPE/choroid and 445 meta-genes (244 downregulated and 201 upregulated) in non-macular AMD RPE/choroid. Of these, 731 genes were newly detected as differentially expressed (DE) genes in macular AMD RPE/choroid and 434 genes in non-macular AMD RPE/choroid compared with controls. Over-representation analysis of KEGG pathways associated with these DE genes mapped revealed two most significantly associated biological processes in macular RPE/choroid in AMD, namely the neuroactive ligand-receptor interaction pathway (represented by 30 DE genes) and the extracellular matrix-receptor interaction signaling pathway (represented by 12 DE genes). Furthermore, protein-protein interaction (PPI) network identified two central hub genes involved in the control of cell proliferation/differentiation processes, HDAC1 and CDK1. Overall, the analysis provided novel insights for broadening the exploration of AMD pathogenesis by extending the number of molecular determinants and functional pathways that underpin AMD-associated RPE/choroid dysfunction.

13.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188393, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679166

RESUMEN

The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis , Señalización del Calcio , Adhesión Celular , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Inflamación , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética
14.
Prog Retin Eye Res ; 79: 100859, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32278708

RESUMEN

Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.


Asunto(s)
Degeneración Macular/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transporte Biológico , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Proteostasis , Retina/patología , Epitelio Pigmentado de la Retina/patología
15.
Invest Ophthalmol Vis Sci ; 61(2): 9, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32049341

RESUMEN

Purpose: Variant B precursor cysteine protease inhibitor cystatin C, a known recessive risk factor for developing exudative age-related macular degeneration (AMD), presents altered intracellular trafficking and reduced secretion from retinal pigment epithelial (RPE) cells. Because cystatin C inhibits multiple extracellular matrix (ECM)-degrading cathepsins, this study evaluated the role of this mutation in inducing ECM-related functional changes in RPE cellular behavior. Methods: Induced pluripotent stem cells gene-edited bi-allelically by CRISPR/Cas9 to express the AMD-linked cystatin C variant were differentiated to RPE cells and assayed for their ability to degrade fluorescently labeled ECM proteins. Cellular migration and adhesion on multiple ECM proteins, differences in transepithelial resistance and polarized protein secretion were tested. Vessel formation induced by gene edited cells-conditioned media was quantified using primary human dermal microvascular epithelial cells. Results: Variant B cystatin C-expressing induced pluripotent stem cells-derived RPE cells displayed a significantly higher rate of laminin and fibronectin degradation 3 days after seeding on fluorescently labeled ECM (P < 0.05). Migration on matrigel, collagen IV and fibronectin was significantly faster for edited cells compared with wild-type (WT) cells. Both edited and WT cells displayed polarized secretion of cystatin C, but transepithelial resistance was lower in gene-edited cells after 6 weeks culture, with significantly lower expression of tight junction protein claudin-3. Media conditioned by gene-edited cells stimulated formation of significantly longer microvascular tubes (P < 0.05) compared with WT-conditioned media. Conclusions: Reduced levels of cystatin C lead to changes in the RPE ability to degrade, adhere, and migrate supporting increased invasiveness and angiogenesis relevant for AMD pathology.


Asunto(s)
Cistatina C/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/citología , Movimiento Celular/fisiología , Células Cultivadas , Cistatina C/genética , Cistatina C/metabolismo , Fibronectinas/metabolismo , Edición Génica , Humanos , Laminina/metabolismo , Mutación Puntual/genética
16.
Cell Death Discov ; 5: 132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31508245

RESUMEN

Specific molecular interactions that underpin the switch between ER stress-triggered autophagy-mediated cellular repair and cellular death by apoptosis are not characterized. This study reports the unexpected interaction elicited by ER stress between the plasma membrane (PM)-localized apoptosis effector PERP and the ER Ca2+ pump SERCA2b. We show that the p53 effector PERP, which specifically induces apoptosis when expressed above a threshold level, has a heterogeneous distribution across the PM of un-stressed cells and is actively turned over by the lysosome. PERP is upregulated following sustained starvation-induced autophagy, which precedes the onset of apoptosis indicating that PERP protein levels are controlled by a lysosomal pathway that is sensitive to cellular physiological state. Furthermore, ER stress stabilizes PERP at the PM and induces its increasing co-localization with SERCA2b at ER-PM junctions. The findings highlight a novel crosstalk between pro-survival autophagy and pro-death apoptosis pathways and identify, for the first time, accumulation of an apoptosis effector to ER-PM junctions in response to ER stress.

17.
Sci Rep ; 9(1): 11718, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406217

RESUMEN

Curcumin (Cur) has been reported to have anti-hepatocellular carcinoma activity but its poor oral bioavailability limits its further development as a chemotherapeutic agent. We synthesized previously a succinate ester prodrug of Cur, curcumin diethyl disuccinate (CurDD) with better chemical stability in a buffer solution pH 7.4. Here, we further investigated and compared the cellular transport and anti-proliferative activity against HepG2 cells of CurDD and Cur. Transport of CurDD across the Caco-2 monolayers provided a significantly higher amount of the bioavailable fraction (BF) of Cur with better cytotoxicity against HepG2 cells compared to that of Cur (p < 0.05). Flow cytometric analysis showed that the BF of CurDD shifted the cell fate to early and late apoptosis to a higher extent than that of Cur. The Western blot analysis revealed that CurDD increased Bax protein expression, downregulated Bcl-2 protein, activated caspase-3 and -9 and increased LC3-II protein level in HepG2 cells. Flow cytometric and immunoblotting results suggest that CurDD can induce HepG2 cell death via an apoptotic pathway. We suggest that CurDD can overcome the limitations of Cur in terms of cellular transport with a potential for further extensive in vitro and in vivo studies of anti-hepatocellular carcinoma effects.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Regulación Neoplásica de la Expresión Génica , Profármacos/farmacología , Succinatos/farmacología , Antineoplásicos Fitogénicos/química , Apoptosis/genética , Transporte Biológico , Células CACO-2 , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Células Hep G2 , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Profármacos/química , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Succinatos/química , Proteína X Asociada a bcl-2/agonistas , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
18.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323999

RESUMEN

Oxidative stress-induced damage to the retinal pigmented epithelium (RPE), a specialised post-mitotic monolayer that maintains retinal homeostasis, contributes to the development of age-related macular degeneration (AMD). Curcumin (Cur), a naturally occurring antioxidant, was previously shown to have the ability to protect RPE cells from oxidative stress. However, poor solubility and bioavailability makes Cur a poor therapeutic agent. As prodrug approaches can mitigate these limitations, we compared the protective properties of the Cur prodrug curcumin diethyl disuccinate (CurDD) against Cur in relation to oxidative stress induced in human ARPE-19 cells. Both CurDD and Cur significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Both drugs exerted their protective effects through the modulation of p44/42 (ERK) and the involvement of downstream molecules Bax and Bcl-2. Additionally, the expression of antioxidant enzymes HO-1 and NQO1 was also enhanced in cells treated with CurDD and Cur. In all cases, CurDD was more effective than its parent drug against oxidative stress-induced damage to ARPE-19 cells. These findings highlight CurDD as a more potent drug compared to Cur against oxidative stress and indicate that its protective effects are exerted through modulation of key apoptotic and antioxidant molecular pathways.


Asunto(s)
Curcumina/análogos & derivados , Peróxido de Hidrógeno/farmacología , Degeneración Macular/metabolismo , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Epitelio Pigmentado de la Retina/citología , Succinatos/farmacología , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo
19.
Sci Rep ; 9(1): 174, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655567

RESUMEN

CRISPR/Cas9 causes double-stranded DNA breaks that can undergo DNA repair either via non-homologous end joining (NHEJ) or, in the presence of a template, homology-directed repair (HDR). HDR is typically used to insert a specific genetic modification into the genome but has low efficiency compared to NHEJ, which is lowered even further when trying to create a homozygous change. In this study we devised a novel approach for homozygous single base editing based on utilising simultaneously two donor DNA templates cloned in plasmids with different antibiotic resistant genes. The donor templates were co-transfected alongside the CRISPR/Cas9 machinery into cells and a double antibiotic selection was optimised and allowed the isolation of viable desired clones. We applied the method for obtaining isogenic cells homozygous for variant B cystatin C, a recessive risk factor for age-related macular degeneration and Alzheimer's disease, in both induced Pluripotent Stem Cells (iPSCs) and a human RPE cell line. Bi-allelic gene edited clones were validated by sequencing, demonstrating that the double antibiotic templates approach worked efficiently for both iPSCs and human differentiated cells. We propose that this one step gene editing approach can be used to improve the specificity and frequency of introducing homozygous modifications in mammalian cells.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cistatina C/genética , ADN/genética , Edición Génica/métodos , Línea Celular , Células Epiteliales/citología , Humanos , Células Madre Pluripotentes Inducidas/citología
20.
Clin Epigenetics ; 11(1): 6, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642396

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is a degenerative disorder of the central retina and the foremost cause of blindness. The retinal pigment epithelium (RPE) is a primary site of disease pathogenesis. The genetic basis of AMD is relatively well understood; however, this knowledge is yet to yield a treatment for the most prevalent non-neovascular disease forms. Therefore, tissue-specific epigenetic mechanisms of gene regulation are of considerable interest in AMD. We aimed to identify differentially methylated genes associated with AMD in the RPE and differentiate local DNA methylation aberrations from global DNA methylation changes, as local DNA methylation changes may be more amenable to therapeutic manipulation. METHODS: Epigenome-wide association study and targeted gene expression profiling were carried out in RPE cells from eyes of human donors. We performed genome-wide DNA methylation profiling (Illumina 450k BeadChip array) on RPE cells from 44 human donor eyes (25 AMD and 19 normal controls). We validated the findings using bisulfite pyrosequencing in 55 RPE samples (30 AMD and 25 normal controls) including technical (n = 38) and independent replicate samples (n = 17). Long interspersed nucleotide element 1 (LINE-1) analysis was then applied to assess global DNA methylation changes in the RPE. RT-qPCR on independent donor RPE samples was performed to assess gene expression changes. RESULTS: Genome-wide DNA methylation profiling identified differential methylation of multiple loci including the SKI proto-oncogene (SKI) (p = 1.18 × 10-9), general transcription factor IIH subunit H4 (GTF2H4) (p = 7.03 × 10-7), and Tenascin X (TNXB) (p = 6.30 × 10-6) genes in AMD. Bisulfite pyrosequencing validated the differentially methylated locus cg18934822 in SKI, and cg22508626 within GTF2H4, and excluded global DNA methylation changes in the RPE in AMD. We further demonstrated the differential expression of SKI, GTF2H4, and TNXB in the RPE of independent AMD donors. CONCLUSIONS: We report the largest genome-wide methylation analysis of RPE in AMD along with associated gene expression changes to date, for the first-time reaching genome-wide significance, and identified novel targets for functional and future therapeutic intervention studies. The novel differentially methylated genes SKI and GTF2H4 have not been previously associated with AMD, and regulate disease pathways implicated in AMD, including TGF beta signaling (SKI) and transcription-dependent DNA repair mechanisms (GTF2H4).


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Degeneración Macular/genética , Proteínas Proto-Oncogénicas/genética , Tenascina/genética , Factores Generales de Transcripción/genética , Factores de Transcripción TFII/genética , Secuenciación Completa del Genoma/métodos , Anciano , Autopsia , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Proto-Oncogenes Mas , Epitelio Pigmentado de la Retina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...