Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(5): 101024, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37119814

RESUMEN

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.


Asunto(s)
COVID-19 , Virus Chikungunya , Virus ARN , Infección por el Virus Zika , Virus Zika , Animales , Ratones , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Virus Chikungunya/fisiología , Inmunidad Innata
2.
Microorganisms ; 11(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985378

RESUMEN

Marek's disease virus (MDV), an Alphaherpesvirus belonging to the genus Mardivirus, causes T cell lymphomas in chickens and remains one of the greatest threats to poultry production worldwide [...].

3.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711787

RESUMEN

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.

4.
Viruses ; 14(2)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215975

RESUMEN

Marek's disease virus (MDV) causes malignant lymphoma in chickens (Marek's disease, MD). Although MD is currently controlled by vaccination, MDV strains have continuously increased in virulence over the recent decades. Polymorphisms in Meq, an MDV-encoded oncoprotein that serves as a transcription factor, have been associated with the enhanced virulence of the virus. In addition, insertions and deletions in Meq have been observed in MDV strains of higher virulence, but their contribution to said virulence remains elusive. In this study, we investigated the contribution of an insertion (L-Meq) and a deletion in the Meq gene (S-Meq) to its functions and MDV pathogenicity. Reporter assays revealed that both insertion and deletion enhanced the transactivation potential of Meq. Additionally, we generated RB-1B-based recombinant MDVs (rMDVs) encoding each Meq isoform and analyzed their pathogenic potential. rMDV encoding L-Meq indueced the highest mortality and tumor incidence in infected animals, whereas the rMDV encoding S-Meq exhibited the lowest pathogenicity. Thus, insertion enhanced the transactivation activity of Meq and MDV pathogenicity, whereas deletion reduced pathogenicity despite having increased transactivation activity. These data suggest that other functions of Meq affect MDV virulence. These data improve our understanding of the mechanisms underlying the evolution of MDV virulence.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Proteínas Oncogénicas Virales/fisiología , Activación Transcripcional/fisiología , Animales , Embrión de Pollo , Herpesvirus Gallináceo 2/patogenicidad , Virulencia
5.
Viruses ; 13(11)2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34835104

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.


Asunto(s)
Exposición Materna/efectos adversos , Malformaciones del Sistema Nervioso/etiología , Trastornos del Neurodesarrollo/etiología , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Infección por el Virus Zika , Animales , Animales Recién Nacidos , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/fisiopatología
6.
Viruses ; 13(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207958

RESUMEN

Since Zika virus (ZIKV) first emerged as a public health concern in 2015, our ability to identify and track the long-term neurological sequelae of prenatal Zika virus (ZIKV) infection in humans has been limited. Our lab has developed a rat model of maternal ZIKV infection with associated vertical transmission to the fetus that results in significant brain malformations in the neonatal offspring. Here, we use this model in conjunction with longitudinal magnetic resonance imaging (MRI) to expand our understanding of the long-term neurological consequences of prenatal ZIKV infection in order to identify characteristic neurodevelopmental changes and track them across time. We exploited both manual and automated atlas-based segmentation of MR images in order to identify long-term structural changes within the developing rat brain following inoculation. The paradigm involved scanning three cohorts of male and female rats that were prenatally inoculated with 107 PFU ZIKV, 107 UV-inactivated ZIKV (iZIKV), or diluent medium (mock), at 4 different postnatal day (P) age points: P2, P16, P24, and P60. Analysis of tracked brain structures revealed significantly altered development in both the ZIKV and iZIKV rats. Moreover, we demonstrate that prenatal ZIKV infection alters the growth of brain regions throughout the neonatal and juvenile ages. Our findings also suggest that maternal immune activation caused by inactive viral proteins may play a role in altered brain growth throughout development. For the very first time, we introduce manual and automated atlas-based segmentation of neonatal and juvenile rat brains longitudinally. Experimental results demonstrate the effectiveness of our novel approach for detecting significant changes in neurodevelopment in models of early-life infections.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa , Imagen por Resonancia Magnética/métodos , Trastornos del Neurodesarrollo/virología , Neuroimagen/métodos , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/complicaciones , Virus Zika/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico por imagen , Ratas , Virus Zika/patogenicidad , Infección por el Virus Zika/diagnóstico por imagen
7.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975938

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Receptores de Coronavirus/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Sitios de Unión , Vacunas contra la COVID-19/química , Femenino , Ingeniería Genética , Glicosilación , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptores de Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Conjugadas/genética , Vacunas Conjugadas/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología
8.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784499

RESUMEN

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Daño del ADN , Isoxazoles/farmacología , Pirazinas/farmacología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/metabolismo , COVID-19/patología , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Células Vero
9.
PLoS Pathog ; 16(12): e1009104, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33306739

RESUMEN

Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek's disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive. Here, we demonstrate that point mutations in the multifunctional meq gene acquired during evolution can significantly alter virulence. Defined mutations found in highly virulent strains also allowed the virus to overcome innate cellular responses and vaccinal protection. Concomitantly, the adaptations in meq enhanced virus shedding into the environment, likely providing a selective advantage for the virus. Our study provides the first experimental evidence that few point mutations in a single herpesviral gene result in drastically increased virulence, enhanced shedding, and escape from vaccinal protection.


Asunto(s)
Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , Proteínas Oncogénicas Virales/genética , Virulencia/genética , Animales , Pollos , Genes Virales/genética , Herpesvirus Gallináceo 2/genética , Mutación Puntual
10.
Heliyon ; 6(12): e05669, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33336096

RESUMEN

Marek's disease (MD) is an alphaherpesvirus (Marek's disease virus, MDV)-induced pathology of chickens associated with paralysis, immunosuppression, neurological signs, and T-cell lymphomas. MD is controlled in poultry production via live attenuated vaccines. The purpose of the current study was to compare methods for precipitating exosomes from vaccinated and protected chicken sera (VEX) and tumor-bearing chicken sera (TEX) for biomarker analysis of vaccine-induced protection and MD lymphomas respectively. A standard polyethylene glycol (PEG, 8%) method was compared to a commercial reagent (total exosome isolation reagent, TEI) for exosome yield and RNA content. Although exosomes purified by PEG or TEI were comparable in size and morphology, TEI-reagent yielded 3-4-fold greater concentration. Relative expression of 8 out of 10 G. gallus- and MDV1-encoded miRNAs examined displayed significant difference depending upon the precipitation method used. Standard PEG yields comparable, albeit lower amounts of exosomes than the TEI-reagent and a distinctive miRNA composition.

11.
bioRxiv ; 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33236008

RESUMEN

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

12.
Avian Dis ; 63(4): 670-680, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31865682

RESUMEN

Marek's disease (MD) is a complex pathology of chickens caused by MD virus (MDV) 1 and is observed as paralysis, immune suppression, neurologic signs, and the rapid formation of T-cell lymphomas. The incidence of MD in commercial broilers is largely controlled via vaccination, either in ovo or at hatch with live attenuated vaccines, i.e., turkey herpesvirus (HVT) or a bivalent combination of HVT with the MDV 2 strain (SB1). To further extend the protection conferred by bivalent HVT/SB-1, recombinant HVTs encoding transgenes of other avian viruses have similarly been used for in ovo administration. Despite decades of use, the specific mechanisms associated with vaccine-induced protection remain obscure. Additionally, the mechanistic basis for vaccine synergism conferred by bivalent HVT/SB-1, compared with HVT or SB-1 administered alone, is largely unknown. In the present study, we report on temporal changes in innate and acquired immune-patterning gene expression by using ex vivo splenocyte infection and in ovo vaccination models. We report that in the ex vivo splenocyte infection model, by 72 hr postinfection, vaccines induced IFN and IFN-stimulated gene expression, with lesser proinflammatory cytokine induction. For several genes (TLR3, IFN-γ, OASL, Mx1, NOS2A, and IL-1ß), the effects on gene expression were additive for HVT, SB1, and HVT/SB1 infection. We observed similar patterns of induction in in ovo-vaccinated commercial broiler embryos and chicks with HVT/SB-1 or recombinant HVT-based bivalent combination (HVT-LT/SB-1). Furthermore, HVT/SB-1 or HVT-LT/SB-1 in ovo vaccination appeared to hasten immune maturation, with expression patterns suggesting accelerated migration of T and natural killer cells into the spleen. Finally, HVT/SB-1 vaccination resulted in a coordinated induction of IL-12p40 and downregulation of suppressors of cytokine signaling 1 and 3, indicative of classical macrophage 1 and T-helper 1 patterning.


Análisis transcripcionales de patrones inmunes innatos y adquiridos inducidos por cepas vacunales del virus de la enfermedad de Marek: virus herpes del pavo (HVT), virus de Marek 2 (cepa SB1) y vacunas bivalentes (HVT/SB1 y HVT-LT/SB1). La enfermedad de Marek (MD) es una patología compleja de los pollos causada por el virus de Marek (MDV) 1 y se observa como parálisis, depresión inmune, signos neurológicos y la formación rápida de linfomas de células T. La incidencia de la enfermedad de Marek en pollos de engorde comerciales se controla en gran medida a través de la vacunación, ya sea in ovo o al momento de la eclosión con vacunas vivas atenuadas, por ejemplo, herpesvirus de pavo (HVT) o una combinación bivalente de HVT con la cepa SB1. Para ampliar aún más la protección conferida por la vacuna bivalente HVT/SB-1, los HVT recombinantes que codifican transgenes de otros virus aviares se han utilizado de forma similar para la administración in ovo. A pesar de décadas de uso, los mecanismos específicos asociados con la protección inducida por la vacuna siguen sin ser esclarecidos completamente. Además, el mecanismo para la sinergia de la vacuna conferida por la vacuna bivalente HVT/SB-1, en comparación con la administración de la cepa HVT o de la cepa SB-1 por sí solas, es en gran medida desconocida. En el presente estudio, se informa sobre los cambios temporales en la expresión genética de patrones inmunes innatos y adquiridos mediante la infección de esplenocitos ex vivo y en modelos de vacunación in ovo. Se reporta que en el modelo de infección de esplenocitos ex vivo, por 72 horas después de la infección, las vacunas indujeron IFN y la expresión de genes estimulada por IFN, con menor inducción de citocinas proinflamatorias. Para varios genes (TLR3, IFNc, OASL, Mx1, NOS2A e IL-1ß), los efectos sobre la expresión de genes fueron aditivos para la infección por HVT, SB1 y HVT/SB1. Se Observaron patrones de inducción similares en embriones de pollo y pollos de engorde comerciales vacunados in ovo con HVT/SB-1 o con la combinación bivalente recombinante basada en HVT (HVT-LT/SB-1). Además, la vacunación in ovo con HVT/SB-1 o HVT-LT/SB-1 parecen acelerar la maduración inmune, con patrones de expresión que sugieren una migración acelerada de células T y células asesinas naturales en el bazo. Finalmente, la vacuna HVT/SB-1 dio como resultado una inducción coordinada de IL-12p40 y una regulación a la baja de supresores de las señales de citocinas 1 y 3, indicativas de los patrones clásicos de macrófagos 1 y células cooperadoras tipo 1.


Asunto(s)
Inmunidad Adaptativa/genética , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Gallináceo 3/inmunología , Inmunidad Innata/genética , Vacunas contra la Enfermedad de Marek/inmunología , Transcripción Genética , Vacunas Virales/inmunología , Animales , Embrión de Pollo , Fibroblastos , Enfermedad de Marek/inmunología
13.
mSphere ; 4(5)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597721

RESUMEN

Vaccines play a crucial role in the protection of animals and humans from deadly pathogens. The first vaccine that also protected against cancer was developed against the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV infects chickens and causes severe immunosuppression, neurological signs, and fatal lymphomas, a process that requires the viral oncogene, meq The most frequently used Marek's disease vaccine is the live-attenuated CVI988/Rispens (CVI) strain, which efficiently protects chickens and prevents tumorigenesis. Intriguingly, CVI expresses at least two isoforms of meq; however, it remains unknown to what extent these isoforms contribute to virus attenuation. In this study, we individually examined the contribution of the two CVI-meq isoforms to the attenuation of the vaccine. We inserted the respective isoforms into a very virulent MDV (strain RB-1B), thereby replacing its original meq gene. Surprisingly, we could demonstrate that the longer isoform of meq strongly enhanced virus-induced pathogenesis and tumorigenesis, indicating that other mutations in the CVI genome contribute to virus attenuation. On the contrary, the shorter isoform completely abrogated pathogenesis, demonstrating that changes in the meq gene can indeed play a key role in virus attenuation. Taken together, our study provides important evidence on attenuation of one of the most frequently used veterinary vaccines worldwide.IMPORTANCE Marek's disease virus (MDV) is one of several oncogenic herpesviruses and causes fatal lymphomas in chickens. The current "gold standard" vaccine is the live-attenuated MDV strain CVI988/Rispens (CVI), which is widely used and efficiently prevents tumor formation. Intriguingly, CVI expresses two predominant isoforms of the major MDV oncogene meq: one variant with a regular size of meq (Smeq) and one long isoform (Lmeq) harboring an insertion of 180 bp in the transactivation domain. In our study, we could break the long-standing assumption that the Lmeq isoform is an indicator for virus attenuation. Using recombinant viruses that express the different CVI-meq isoforms, we could demonstrate that both isoforms drastically differ in their abilities to promote pathogenesis and tumor formation in infected chickens.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Vacunas contra la Enfermedad de Marek/genética , Proteínas Oncogénicas Virales/genética , Animales , Pollos , Enfermedad de Marek/prevención & control , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética
14.
PLoS One ; 14(6): e0218539, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31220154

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with microcephaly and other neurological disorders in infants born to infected mothers. Despite being declared an international emergency by the World Health Organization, very little is known about the mechanisms of ZIKV pathogenesis or the long-term consequences of maternal ZIKV infection in the affected offspring, largely due to the lack of appropriate rodent models. To address this issue, our lab has developed a working model of prenatal ZIKV infection in rats. In this study, we infected immune competent pregnant female rats with 105-107 PFU of ZIKV (PRVABC59, Puerto Rico/Human/Dec 2015) in order to examine its pathogenesis in the dams and pups. We examined the febrile response and sickness behavior in the dams, in addition to neonatal mortality, microglia morphology, cortical organization, apoptosis, and brain region-specific volumes in the offspring. Here, we demonstrate that pregnant and non-pregnant female rats have a distinct febrile response to ZIKV infection. Moreover, prenatal ZIKV infection increased cell death and reduced tissue volume in the hippocampus and cortex in the neonatal offspring. For the first time, we demonstrate the efficacy and validity of an immunocompetent rat model for maternal ZIKV infection that results in significant brain malformations in the neonatal offspring.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal/patología , Convulsiones/patología , Infección por el Virus Zika/patología , Animales , Apoptosis , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Chlorocebus aethiops , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Microglía/metabolismo , Microglía/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Convulsiones/fisiopatología , Células Vero , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/fisiopatología
15.
J Neuroimmunol ; 332: 73-77, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30959341

RESUMEN

The most notable effect of prenatal Zika virus (ZIKV) infection is severe microcephaly. ZIKV has a selective tropism for neural progenitor cells; however, it is not clear what role the immune cells of the brain, microglia, may have in mitigating or exacerbating neuronal cell death following ZIKV infection. We cultured hippocampal and cortical neural cells from neonatal rat pups and infected them with ZIKV at various multiplicities of infection (MOI). We found that the neuroimmune response to ZIKV infection is composed of both pro-inflammatory and type I interferon responses and is largely dependent upon the viral dose.


Asunto(s)
Células-Madre Neurales/virología , Infección por el Virus Zika/inmunología , Virus Zika/patogenicidad , 2',5'-Oligoadenilato Sintetasa/biosíntesis , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Femenino , Hipocampo/citología , Interferón beta/biosíntesis , Interleucina-6/biosíntesis , Masculino , Microglía/inmunología , Proteínas de Resistencia a Mixovirus/biosíntesis , Células-Madre Neurales/inmunología , Células-Madre Neurales/metabolismo , Ratas , Tropismo Viral
16.
Genes (Basel) ; 10(2)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30764491

RESUMEN

Marek's disease virus (MDV) is the causative agent of Marek's disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.


Asunto(s)
Exosomas/genética , Linfoma/genética , Enfermedad de Marek/genética , Enfermedades de las Aves de Corral/genética , Proteoma/genética , Transcriptoma , Vacunación/veterinaria , Animales , Pollos , Exosomas/metabolismo , Femenino , Linfoma/metabolismo , Linfoma/prevención & control , Masculino , Enfermedad de Marek/metabolismo , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/prevención & control , Proteoma/metabolismo
17.
J Virol Methods ; 263: 1-9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30316797

RESUMEN

Extracellular vesicles (EVs) is a collective term used to refer microparticles, exosomes, and apoptotic bodies produced by a variety of cells and released into interstitial spaces and bodily fluids. Serum exosomes can serve as invaluable biomarkers, containing m/miRNAs, lipids, and proteins, indicative of various conditions. There are currently limited studies on the characterization and mutual consensus of biomarker profiles of serum exosomes purified by different methods. Here we compared the advantages and disadvantages of two commonly used serum exosome purification procedures including ultracentrifugation (UC) and Total Exosome Isolation (TEI) reagent, by analyzing exosome size distribution, concentration, morphology and miRNA expression profiles. Serum was obtained from Marek's disease virus (MDV)-infected chickens that were either vaccinated against Marek's disease (MD), and thus protected, or unvaccinated and bearing MDV-induced tumors. Nanoparticle tracking analysis (NTA) and Transmission Electron Microscopy (TEM) were performed to evaluate particle size, concentration, and morphological integrity, respectively. Our results indicate that the size distribution of particles purified by either procedure is consistent with that of exosomes (30-150 nm). TEI reagent generated higher yields and co-isolated additional EV populations that are slightly larger (∼180 nm). Based on the miRNA expression profiles from a previous high throughput sequencing experiment of exosome small RNAs, we selected six cellular and four MDV1 miRNAs, to validate their expression in UC- and TEI-purified exosomes. miRNA expression profiles displayed relative correlation between the two procedures, but distinctive differences were observed in abundance with TEI-purified exosomes showing higher miRNA expression consistent with higher yield than those purified by UC. TEI-purified exosomes from vaccinated chickens exhibited greater expression of tumor suppressor miRNA, gga-mir-146b and least expression of oncomiR, gga-mir-21 compared to those obtained from tumor-bearing chickens. We propose that gga-mir-146 and -21 can serve as serum exosome biomarkers for vaccine-induced protection and MD tumors respectively.


Asunto(s)
MicroARN Circulante/sangre , Exosomas/química , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/sangre , Enfermedades de las Aves de Corral/sangre , Juego de Reactivos para Diagnóstico , Ultracentrifugación , Animales , Biomarcadores/sangre , Pollos/inmunología , Pollos/virología , MicroARN Circulante/genética , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología
18.
Virology ; 522: 1-12, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29979959

RESUMEN

Marek's disease (MD) is a pathology of chickens associated with paralysis, immune suppression, and the rapid formation of T-cell lymphomas. MD is caused by the herpesvirus, Marek's disease virus (MDV). We examined endoplasmic reticulum (ER) stress and the activation of unfolded protein response (UPR) pathways during MDV infection of cells in culture and lymphocytes in vivo. MDV strains activate the UPR as measured by increased mRNA expression of GRP78/BiP with concomitant XBP1 splicing and induction of its target gene, EDEM1. Cell culture replication of virulent, but not vaccine MDVs, activated the UPR at late in infection. Pathotype-associated UPR activation was induced to a greater level by a vv + MDV. Discrete UPR activation was observed during MDV in vivo infection, with the level of UPR modulation being affected by the MDV oncoprotein Meq. Finally, ATF6 was found to be activated in vv + MDV-induced primary lymphomas, suggesting a possible role in tumor progression.


Asunto(s)
Herpesvirus Gallináceo 3/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Enfermedad de Marek/patología , Enfermedades de las Aves de Corral/patología , Respuesta de Proteína Desplegada , Animales , Células Cultivadas , Pollos , Perfilación de la Expresión Génica , Linfocitos/patología , Linfocitos/virología
19.
Immunogenetics ; 70(10): 693-694, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29982918

RESUMEN

The Figure 3 in the original version of this article was incorrectly published. In this article the top panel of Figure 3 that describes the amino acid sequence alignment is now added. The original article has been corrected.

20.
Immunogenetics ; 70(9): 599-611, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29947944

RESUMEN

The function of the chicken's major histocompatibility complex (MHC or B complex) class I major (BF2) and minor (BF1) glycoproteins is compared for their expression, ability to present viral antigens to cytotoxic T lymphocytes (CTLs), and interaction with natural killer (NK) cells. MHC-restricted CTLs recognized virus antigen in the context of the BF2*21 major glycoprotein but not the BF1*21 minor glycoprotein. Marek's disease virus (MDV), a large DNA virus known to reduce the cell surface expression of class I glycoprotein, reduced the expression of BF2 glycoprotein while BF1glycoprotein expressions are remained as no change or slight increase. In addition, the expression of BF1*21 class I glycoprotein protected target cells from NK cell lysis while the expression of the BF2*21 class I glycoprotein enhanced NK cell lysis of target cells. Therefore, BF1 and BF2 provide two different cellular immune functions; BF1 negatively regulates the NK cell killing activity and BF2 restricts the antigen specific CTL immune response.


Asunto(s)
Pollos/genética , Antígenos de Histocompatibilidad Clase I/genética , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Virus de la Leucosis Aviar/inmunología , Virus de la Leucosis Aviar/patogenicidad , Línea Celular , Embrión de Pollo , Pollos/inmunología , Epítopos/metabolismo , Regulación de la Expresión Génica/inmunología , Genes MHC Clase I , Herpesvirus Gallináceo 2/patogenicidad , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Parásitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...