Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Vet Q ; 44(1): 1-10, 2024 Dec.
Article En | MEDLINE | ID: mdl-38174799

SARS-CoV-2's rapid global spread caused the declaration of COVID-19 as a pandemic in March 2020. Alongside humans, domestic dogs and cats are also susceptible to infection. However, limited reports on pet infections in Chile prompted a comprehensive study to address this knowledge gap. Between March 2021 and March 2023, the study assessed 65 pets (26 dogs and 39 cats) from 33 COVID-19+ households alongside 700 nasal swabs from animals in households with unknown COVID-19 status. Using RT-PCR, nasal, fecal, and environmental samples were analyzed for the virus. In COVID-19+ households, 6.06% tested positive for SARS-CoV-2, belonging to 3 dogs, indicating human-to-pet transmission. Pets from households with unknown COVID-19 status tested negative for the virus. We obtained 2 SARS-CoV-2 genomes from animals, that belonged to Omicron BA.4.1 variant, marking the first report of pets infected with this lineage globally. Phylogenetic analysis showed these sequences clustered with human sequences collected in Chile during the same period when the BA.4.1 variant was prevalent in the country. The prevalence of SARS-CoV-2 in Chilean pets was relatively low, likely due to the country's high human vaccination rate. Our study highlights the importance of upholding and strengthening human vaccination strategies to mitigate the risk of interspecies transmission. It underscores the critical role of the One Health approach in addressing emerging zoonotic diseases, calling for further research on infection dynamics and risk factors for a comprehensive understanding.


COVID-19 , Cat Diseases , Dog Diseases , Humans , Animals , Cats , Dogs , Chile/epidemiology , Dog Diseases/epidemiology , Phylogeny , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Pets
2.
Nat Commun ; 14(1): 4174, 2023 07 13.
Article En | MEDLINE | ID: mdl-37443074

Since the emergence of SARS-CoV-2, vaccines targeting COVID-19 have been developed with unprecedented speed and efficiency. CoronaVac, utilising an inactivated form of the COVID-19 virus and the mRNA26 based Pfizer/BNT162b2 vaccines are widely distributed. Beyond the ability of vaccines to induce production of neutralizing antibodies, they might lead to the generation of antibodies attenuating the disease by recruiting cytotoxic and opsonophagocytic functions. However, the Fc-effector functions of vaccine induced antibodies are much less studied than virus neutralization. Here, using systems serology, we follow the longitudinal Fc-effector profiles induced by CoronaVac and BNT162b2 up until five months following the two-dose vaccine regimen. Compared to BNT162b2, CoronaVac responses wane more slowly, albeit the levels remain lower than that of BNT162b2 recipients throughout the entire observation period. However, mRNA vaccine boosting of CoronaVac responses, including response to the Omicron variant, induce significantly higher peak of antibody functional responses with increased humoral breadth. In summary, we show that vaccine platform-induced humoral responses are not limited to virus neutralization but rather utilise antibody dependent effector functions. We demonstrate that this functionality wanes with different kinetics and can be rescued and expanded via boosting with subsequent homologous and heterologous vaccination.


COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Immunoglobulin Fc Fragments , Antibodies, Neutralizing , Antibodies, Viral
3.
bioRxiv ; 2022 Jul 25.
Article En | MEDLINE | ID: mdl-35923313

Since the emergence of the SARS-CoV-2 virus, we have witnessed a revolution in vaccine development with the rapid emergence and deployment of both traditional and novel vaccine platforms. The inactivated CoronaVac vaccine and the mRNA-based Pfizer/BNT162b2 vaccine are among the most widely distributed vaccines, both demonstrating high, albeit variable, vaccine effectiveness against severe COVID-19 over time. Beyond the ability of the vaccines to generate neutralizing antibodies, antibodies can attenuate disease via their ability to recruit the cytotoxic and opsinophagocytic functions of the immune response. However, whether Fc-effector functions are induced differentially, wane with different kinetics, and are boostable, remains unknown. Here, using systems serology, we profiled the Fc-effector profiles induced by the CoronaVac and BNT162b2 vaccines, over time. Despite the significantly higher antibody functional responses induced by the BNT162b2 vaccine, CoronaVac responses waned more slowly, albeit still found at levels below those present in the systemic circulation of BNT162b2 immunized individuals. However, mRNA boosting of the CoronaVac vaccine responses resulted in the induction of significantly higher peak antibody functional responses with increased humoral breadth, including to Omicron. Collectively, the data presented here point to striking differences in vaccine platform-induced functional humoral immune responses, that wane with different kinetics, and can be functionally rescued and expanded with boosting.

...