Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260306

RESUMEN

While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.

2.
Integr Biol (Camb) ; 152023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37015816

RESUMEN

This paper describes the manufacture of geometrically inverted mammary organoids encapsulating primary mammary preadipocytes and adipocytes. Material manipulation in an array of 192 hanging drops induces cells to self-assemble into inside-out organoids where an adipose tissue core is enveloped by a cell-produced basement membrane, indicated by laminin V staining and then a continuous layer of mammary epithelial cells. This inverted tissue structure enables investigation of multiple mammary cancer subtypes, with a significantly higher extent of invasion by triple-negative MDA-MB-231 breast cancer cells compared to MCF7 cells. By seeding cancer cells into co-culture around pre-formed organoids with encapsulated preadipocytes/adipocytes, invasion through the epithelium, then into the adipose core is observable through acquisition of confocal image stacks of whole mount specimens. Furthermore, in regions of the connective tissue core where invasion occurs, there is an accumulation of collagen in the microenvironment. Suggesting that this collagen may be conducive to increased invasiveness, the anti-fibrotic drug pirfenidone shows efficacy in this model by slowing invasion. Comparison of adipose tissue derived from three different donors shows method consistency as well as the potential to evaluate donor cell-based biological variability. Insight box Geometrically inverted mammary organoids encapsulating primary preadipocytes/adipocytes (P/As) are bioengineered using a minimal amount of Matrigel scaffolding. Use of this eversion-free method is key to production of adipose mammary organoids (AMOs) where not only the epithelial polarity but also the entire self-organizing arrangement, including adipose position, is inside-out. While an epithelial-only structure can analyze cancer cell invasion, P/As are required for invasion-associated collagen deposition and efficacy of pirfenidone to counteract collagen deposition and associated invasion. The methods described strike a balance between repeatability and preservation of biological variability: AMOs form consistently across multiple adipose cell donors while revealing cancer cell invasion differences.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Adipocitos , Colágeno , Organoides , Invasividad Neoplásica , Microambiente Tumoral
3.
Biomaterials ; 290: 121828, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36215909

RESUMEN

This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.


Asunto(s)
Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Organoides , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Organoides/metabolismo , Longevidad , Túbulos Renales Proximales/metabolismo , Albúminas/metabolismo
4.
Integr Biol (Camb) ; 14(1): 1-12, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35184163

RESUMEN

This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-ß1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.


Asunto(s)
Cicatriz , Fibrina , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Factor de Crecimiento Transformador beta1/metabolismo
5.
Micromachines (Basel) ; 13(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056297

RESUMEN

Intestinal organoids are 3D cell structures that replicate some aspects of organ function and are organized with a polarized epithelium facing a central lumen. To enable more applications, new technologies are needed to access the luminal cavity and apical cell surface of organoids. We developed a perfusion system utilizing a double-barrel glass capillary with a pressure-based pump to access and modify the luminal contents of a human intestinal organoid for extended periods of time while applying cyclic cellular strain. Cyclic injection and withdrawal of fluorescent FITC-Dextran coupled with real-time measurement of fluorescence intensity showed discrete changes of intensity correlating with perfusion cycles. The perfusion system was also used to modify the lumen of organoids injected with GFP-expressing E. coli. Due to the low concentration and fluorescence of the E. coli, a novel imaging analysis method utilizing bacteria enumeration and image flattening was developed to monitor E. coli within the organoid. Collectively, this work shows that a double-barrel perfusion system provides constant luminal access and allows regulation of luminal contents and luminal mixing.

6.
Sci Rep ; 12(1): 317, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013350

RESUMEN

This manuscript describes a new method for forming basal-in MCF10A organoids using commercial 384-well ultra-low attachment (ULA) microplates and the development of associated live-cell imaging and automated analysis protocols. The use of a commercial 384-well ULA platform makes this method more broadly accessible than previously reported hanging drop systems and enables in-incubator automated imaging. Therefore, time points can be captured on a more frequent basis to improve tracking of early organoid formation and growth. However, one major challenge of live-cell imaging in multi-well plates is the rapid accumulation of large numbers of images. In this paper, an automated MATLAB script to handle the increased image load is developed. This analysis protocol utilizes morphological image processing to identify cellular structures within each image and quantify their circularity and size. Using this script, time-lapse images of aggregating and non-aggregating culture conditions are analyzed to profile early changes in size and circularity. Moreover, this high-throughput platform is applied to widely screen concentration combinations of Matrigel and epidermal growth factor (EGF) or heparin-binding EGF-like growth factor (HB-EGF) for their impact on organoid formation. These results can serve as a practical resource, guiding future research with basal-in MCF10A organoids.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/instrumentación , Proliferación Celular , Ensayos Analíticos de Alto Rendimiento , Procesamiento de Imagen Asistido por Computador , Glándulas Mamarias Humanas/fisiología , Microscopía Fluorescente , Organoides , Imagen de Lapso de Tiempo , Algoritmos , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno/farmacología , Combinación de Medicamentos , Factor de Crecimiento Epidérmico/farmacología , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/farmacología , Humanos , Laminina/farmacología , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/efectos de los fármacos , Proteoglicanos/farmacología , Factores de Tiempo
7.
Biofabrication ; 13(3)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33440354

RESUMEN

This paper describes printing of microscale fibroblast-laden matrices using an aqueous two-phase approach that controls thrombin-mediated enzymatic crosslinking of fibrin. Optimization of aqueous two-phase formulations enabled polymerization of consistent sub-microliter volumes of cell-laden fibrin. When plasminogen was added to these micro-scaffolds, the primary normal human lung fibroblasts converted it to plasmin, triggering gradual degradation of the fibrin. Time-lapse live-cell imaging and automated image analysis provided readouts of time to degradation of 50% of the scaffold as well as maximum degradation rate. The time required for degradation decreased linearly with cell number while it increased in a dose-dependent manner upon addition of TGF-ß1. Fibroblasts isolated from idiopathic pulmonary fibrosis patients showed similar trends with regards to response to TGF-ß1 stimulation. Addition of reactive oxygen species (ROS) slowed fibrinolysis but only in the absence of TGF-ß1, consistent with published studies demonstrating that pro-fibrotic cellular phenotypes induced by TGF-ß1 are mediated, at least in part, through increased production of ROS. FDA-approved and experimental anti-fibrosis drugs were also tested for their effects on fibrinolysis rates. Given the central role of fibrinolysis in both normal and pathogenic wound healing of various tissues, the high-throughput cell-mediated fibrinolysis assay described has broad applicability in the study of many different cell types and diseases. Furthermore, aqueous two-phase printing of fibrin addresses several current limitations of fibrin bio-inks, potentially enabling future applications in tissue engineering andin vitromodels.


Asunto(s)
Fibrinólisis , Fibrina , Fibroblastos , Humanos , Cicatrización de Heridas
8.
Adv Healthc Mater ; 10(4): e2000810, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32583612

RESUMEN

This paper describes mammary organoids with a basal-in phenotype where the basement membrane is located on the interior surface of the organoid. A key materials consideration to induce this basal-in phenotype is the use of a minimal gel scaffold that the epithelial cells self-assemble around and encapsulate. When MDA-MB-231 breast cancer cells are co-cultured with epithelial cells from day 0 under these conditions, cells self-organize into patterns with distinct cancer cell populations both inside and at the periphery of the epithelial organoid. In another type of experiment, the robust formation of the basement membrane on the epithelial organoid interior enables convenient studies of MDA-MB-231 invasion in a tumor progression-relevant direction relative to epithelial cell-basement membrane positioning. That is, the study of cancer invasion through the epithelium first, followed by the basement membrane to the basal side, is realized in an experimentally convenient manner where the cancer cells are simply seeded on the outside of preformed organoids, and their invasion into the organoid is monitored. Interestingly, invasion is more prominent when tumor cells are added to day 7 organoids with less developed basement membranes compared to day 16 organoids with more defined ones.


Asunto(s)
Células Epiteliales , Organoides , Membrana Basal , Humanos , Invasividad Neoplásica , Fenotipo
9.
Front Bioeng Biotechnol ; 8: 582602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072731

RESUMEN

Pulmonary fibrosis is a deadly lung disease, wherein normal lung tissue is progressively replaced with fibrotic scar tissue. An aspect of this process can be recreated in vitro by embedding fibroblasts into a collagen matrix and providing a fibrotic stimulus. This work expands upon a previously described method to print microscale cell-laden collagen gels and combines it with live cell imaging and automated image analysis to enable high-throughput analysis of the kinetics of cell-mediated contraction of this collagen matrix. The image analysis method utilizes a plugin for FIJI, built around Waikato Environment for Knowledge Analysis (WEKA) Segmentation. After cross-validation of this automated image analysis with manual shape tracing, the assay was applied to primary human lung fibroblasts including cells isolated from idiopathic pulmonary fibrosis patients. In the absence of any exogenous stimuli, the analysis showed significantly faster and more extensive contraction of the diseased cells compared to the healthy ones. Upon stimulation with transforming growth factor beta 1 (TGF-ß1), fibroblasts from the healthy donor showed significantly more contraction throughout the observation period while differences in the response of diseased cells was subtle and could only be detected during a smaller window of time. Finally, dose-response curves for the inhibition of collagen gel contraction were determined for 3 small molecules including the only 2 FDA-approved drugs for idiopathic pulmonary fibrosis.

10.
Sci Rep ; 10(1): 4824, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179778

RESUMEN

Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we generate large numbers of free-floating GUVs through the rehydration of lipid films deposited on soft polyacrylamide (PAA) gels. We show that this technique produces high GUV concentrations for a range of lipid types, including charged ones, independently of the ionic strength of the buffer used. We demonstrate that the gentle hydration of PAA gels results in predominantly unilamellar vesicles, which is in contrast to comparable methods analyzed in this work. Unilamellarity is a defining feature of GUVs and the generation of uniform populations is key for many downstream applications. The PAA method is widely applicable and can be easily implemented with commonly utilized laboratory reagents, making it an appealing platform for the study of membrane biophysics.

11.
Bio Protoc ; 10(21): e3807, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659461

RESUMEN

Giant unilamellar vesicles (GUVs) are a widely used model system for a range of applications including membrane biophysics, drug delivery, and the study of actin dynamics. While several protocols have been developed for their generation in recent years, the use of these techniques involving charged lipid types and buffers of physiological ionic strength has not been widely adopted. This protocol describes the generation of large numbers of free-floating GUVs, even for charged lipid types and buffers of higher ionic strength, using a simple approach involving soft polyacrylamide (PAA) gels. This method entails glass cover slip functionalization with (3-Aminopropyl)trimethoxysilane (APTES) and glutaraldehyde to allow for covalent bonding of PAA onto the glass surface. After polymerization of the PAA, the gels are dried in vacuo. Subsequently, a lipid of choice is evenly dispersed on the dried gel surface, and buffers of varying ionic strength can be used to rehydrate the gels and form GUVs. This protocol is robust for the production of large numbers of free-floating GUVs composed of different lipid compositions under physiological conditions. It can conveniently be performed with commonly utilized laboratory reagents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA