Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 901: 165896, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37524173

RESUMEN

Reconciling top-down and bottom-up country-level greenhouse gas emission estimates remains a key challenge in the MRV (Monitoring, Reporting, Verification) paradigm. Here we propose to independently quantify cumulative emissions from a significant number of methane (CH4) emitters at national level and derive robust constraints for the national inventory. Methane emissions in Cyprus, an insular country, stem primarily from waste and agricultural activities. We performed 24 intensive survey days of mobile measurements of CH4 from October 2020 to September 2021 at emission 'hotspots' in Cyprus accounting together for about 28 % of national CH4 emissions. The surveyed areas include a large active landfill (Koshi, 8 % of total emissions), a large closed landfill (Kotsiatis, 18 %), and a concentrated cattle farm area (Aradippou, 2 %). Emission rates for each site were estimated using repeated downwind transects and a Gaussian plume dispersion model. The calculated methane emissions from landfills of Koshi and Kotsiatis (25.9 ± 6.4 Gg yr-1) and enteric fermentation of cattle (10.4 ± 4.4 Gg yr-1) were about 129 % and 40 % larger, respectively than the bottom-up sectorial annual estimates used in the national UNFCCC inventory. The parametrization of the Gaussian plume model dominates the uncertainty in our method, with a typical 21 % uncertainty. Seasonal variations have little influence on the results. We show that using an ensemble of in situ measurements targeting representative methane emission hotspots with consistent temporal and spatial coverage can contribute to the monitoring and validation of national bottom-up emission inventories.

2.
Environ Sci Technol ; 55(13): 8583-8591, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34159780

RESUMEN

Megacities, with their large and complex infrastructures, are significant sources of methane emissions. To develop a simple, low-cost methodology to quantify these globally important methane sources, this study focuses on mobile measurements of methane (CH4) and its isotopic composition in Paris. Data collected between September 2018 to March 2019 resulted in 17 days of measurements, which provided spatial distribution of street-level methane mixing ratios, source type identification, and emission quantification. Consequently, 90 potential leaks were detected in Paris sorted into three leak categories: natural gas distribution network emissions (63%), sewage network emissions (33%), and emissions from heating furnaces of buildings (4%). The latter category has not previously been reported in urban methane studies. Accounting for the detectable emissions from the ground, the total estimated CH4 emission rate of Paris was 5000 L/min (190 t/yr), with the largest contribution from gas leaks (56%). This ranks Paris as a city with medium CH4 emissions. Two areas of clusters were found, where 22% and 56% of the total potential emissions of Paris were observed. Our findings suggest that the natural gas distribution network, the sewage system, and furnaces of buildings are ideal targets for street-level CH4 emission reduction efforts for Paris.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Ciudades , Francia , Metano/análisis , Gas Natural/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...