Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3788, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710673

RESUMEN

In recent decades, strategies involving transition-metal catalyzed carbon-carbon or carbon-heteroatom bond coupling have emerged as potent synthetic tools for constructing intricate molecular architectures. Among these, decarboxylative carbon-nitrogen bond formation using abundant carboxylic acids or their derivatives has garnered notable attention for accessing alkyl- or arylamines, one of key pharmacophores. While several decarboxylative amination methods have been developed, the involvement of a common carboradical intermediate currently poses challenges in achieving stereospecific transformation toward chiral alkylamines. Herein, we present a base-mediated, stereoretentive decarboxylative amidation by harnessing 1,4,2-dioxazol-5-one as a reactive and robust amidating reagent under transition-metal-free ambient conditions, encompassing all types of primary, secondary and tertiary carboxylic acids, thereby providing access to the important pharmacophore, α-chiral amines. This method exhibits high functional group tolerance, convenient scalability, and ease of applicability for 15N-isotope labeling, thus accentuating its synthetic utilities. Experimental and computational mechanistic investigations reveal a sequence of elementary steps: i) nucleophilic addition of carboxylate to dioxazolone, ii) rearrangement to form a dicarbonyl N-hydroxy intermediate, iii) conversion to hydroxamate, followed by a Lossen-type rearrangement, and finally, iv) reaction of the in situ generated isocyanate with carboxylate leading to C-N bond formation in a stereoretentive manner.

3.
Nat Commun ; 13(1): 6682, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335098

RESUMEN

Exsolution of excess transition metal cations from a non-stoichiometric perovskite oxide has sparked interest as a facile route for the formation of stable nanoparticles on the oxide surface. However, the atomic-scale mechanism of this nanoparticle formation remains largely unknown. The present in situ scanning transmission electron microscopy combined with density functional theory calculation revealed that the anti-phase boundaries (APBs) characterized by the a/2 < 011> type lattice displacement accommodate the excess B-site cation (Ni) through the edge-sharing of BO6 octahedra in a non-stoichiometric ABO3 perovskite oxide (La0.2Sr0.7Ni0.1Ti0.9O3-δ) and provide the fast diffusion pathways for nanoparticle formation by exsolution. Moreover, the APBs further promote the outward diffusion of the excess Ni toward the surface as the segregation energy of Ni is lower at the APB/surface intersection. The formation of nanoparticles occurs through the two-step crystallization mechanism, i.e., the nucleation of an amorphous phase followed by crystallization, and via reactive wetting on the oxide support, which facilitates the formation of a stable triple junction and coherent interface, leading to the distinct socketing of nanoparticles to the oxide support. The atomic-scale mechanism unveiled in this study can provide insights into the design of highly stable nanostructures.

4.
Nat Commun ; 13(1): 5616, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153312

RESUMEN

The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer. This structurally disordered and chemically Zn-deficient quasi-liquid is derived from the formation and inward diffusion of Zn vacancies that stabilize the (0001) polar surface. The quasi-liquid controls the dissociative evaporation of ZnO with establishing steady state reactions with Zn and O2 vapors and the underlying ZnO crystal; while the quasi-liquid catalyzes the disordering of ZnO lattice by injecting Zn vacancies, it facilitates the desorption of O2 molecules. This study reveals that the polarity-driven surface disorder is the key structural feature driving the fast anisotropic evaporation and crystal growth of ZnO nanostructures along the [0001] direction.

5.
Adv Sci (Weinh) ; 9(22): e2200323, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665488

RESUMEN

Growing an Inx Ga1- x N/GaN (InGaN/GaN) multi-quantum well (MQW) heterostructure in nanowire (NW) form is expected to overcome limitations inherent in light-emitting diodes (LEDs) based on the conventional planar heterostructure. The epitaxial strain induced in InGaN/GaN MQW heterostructure can be relaxed through the sidewalls of NW, which is beneficial to LEDs because a much larger misfit strain with higher indium concentration can be accommodated with reduced piezoelectric polarization fields. The strain relaxation, however, renders highly complex strain distribution within the NW heterostructure. Here the authors show that complementary strain mapping using scanning transmission electron microscopy and dark-field inline holography can comprehend the strain distribution within the axial In0.3 Ga0.7 N/GaN MQW heterostructure embedded in GaN NW by providing the strain maps which can cover the entire NW and fine details near the sidewalls. With the quantitative evaluation by 3D finite element modelling, it is confirmed that the observed complex strain distribution is induced by the strain relaxation leading to the strain partitioning between InGaN quantum disk, GaN quantum well, and the surrounding epitaxial GaN shell. The authors further show that the strain maps provide the strain tensor components which are crucial for accurate assessment of the strain-induced piezoelectric fields in NW LEDs.

6.
Nat Commun ; 13(1): 3641, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752624

RESUMEN

Lithographically defined arrays of nanomagnets are well placed for application in areas such as probabilistic computing or reconfigurable magnonics due to their emergent collective dynamics and writable magnetic order. Among them are artificial spin ice (ASI), which are arrays of binary in-plane macrospins exhibiting geometric frustration at the vertex interfaces. Macrospin flips in the arrays create topologically protected magnetic charges, or emergent monopoles, which are bound to an antimonopole to conserve charge. In the absence of controllable pinning, it is difficult to manipulate individual monopoles in the array without also influencing other monopole excitations or the counter-monopole charge. Here, we tailor the local magnetic order of a classic ASI lattice by introducing a ferromagnetic defect with shape anisotropy into the array. This creates monopole injection sites at nucleation fields below the critical lattice switching field. Once formed, the high energy monopoles are fixed to the defect site and may controllably propagate through the lattice under stimulation. Defect programing of bound monopoles within the array allows fine control of the pathways of inverted macrospins. Such control is a necessary prerequisite for the realization of functional devices, e. g. reconfigurable waveguide in nanomagnonic applications.

7.
Nano Lett ; 21(12): 5247-5253, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34100618

RESUMEN

In heterogeneous catalysts, metal-oxide interactions occur spontaneously but often in an undesired way leading to the oxidation of metal nanoparticles. Manipulating such interactions to produce highly active surface of metal nanoparticles can warrant the optimal catalytic activity but has not been established to date. Here we report that a prior reduced TiO2 support can reverse the interaction with Pt nanoparticles and augment the metallic state of Pt, exhibiting a 3-fold increase in hydrogen production rate compared to that of conventional Pt/TiO2. Spatially resolved electron energy loss spectroscopy of the Ti valence state and the electron density distribution within Pt nanoparticles provide direct evidence supporting that the Pt/TiO2/H2O triple junctions are the most active catalytic sites for water reduction. Our reverse metal-oxide interaction scheme provides a breakthrough in the stagnated hydrogen production efficiency and can be applied to other heterogeneous catalyst systems composed of metal nanoparticles with reducible oxide supports.


Asunto(s)
Nanopartículas del Metal , Agua , Catálisis , Óxidos , Titanio
8.
Sci Adv ; 5(7): eaaw3180, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31360767

RESUMEN

We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.

9.
Nat Nanotechnol ; 13(7): 618, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29849186

RESUMEN

In the version of this Letter originally published, in two instances in Fig. 1 the layers in the cross-sectional view of the (001) interface were incorrectly labelled: in Fig. 1b SrO+ should have read SrO0; in Fig. 1c LaO+, AlO2-, LaO+, TiO20, SrO+, TiO20 should have read LaO33-, Al3+, LaO33-, Ti4+, SrO34-, Ti4+. In Fig. 3c the upper-right equation read -σs = -e/2a2 but should have read -σs = e/2a2 and in Fig. 3f the lower-right equation read -σs = -e/2√3a2 but should have read σs = -e/2√3a2. These errors have now been corrected in the online version of the Letter.

10.
Nano Lett ; 18(7): 4257-4262, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29902008

RESUMEN

Despite a longstanding controversy surrounding TiO2 materials, TiO2 polymorphs with heterojunctions composed of anatase and rutile outperform individual polymorphs because of the type-II energetic band alignment at the heterojunction interface. Improvement in photocatalysis has also been achieved via black TiO2 with a thin disorder layer surrounding ordered TiO2. However, localization of this disorder layer in a conventional single TiO2 nanoparticle with the heterojunction composed of anatase and rutile has remained a big challenge. Here, we report the selective positioning of a disorder layer of controlled thicknesses between the anatase and rutile phases by a conceptually different synthetic route to access highly efficient novel metal-free photocatalysis for H2 production. The presence of a localized disorder layer within a single TiO2 nanoparticle was confirmed for the first time by high-resolution transmission electron microscopy with electron energy-loss spectroscopy and inline electron holography. Multiple heterojunctions in single TiO2 nanoparticles composed of crystalline anatase/disordered rutile/ordered rutile layers give the nanoparticles superior electron/hole separation efficiency and novel metal-free surface reactivity, which concomitantly yields an H2 production rate that is ∼11-times higher than that of Pt-decorated conventional anatase and rutile single heterojunction TiO2 systems.

11.
ACS Nano ; 12(6): 6301-6309, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29799725

RESUMEN

Alloying two-dimensional transition metal dichalcogenides (2D TMDs) is a promising avenue for band gap engineering. In addition, developing a scalable synthesis process is essential for the practical application of these alloys with tunable band gaps in optoelectronic devices. Here, we report the synthesis of optically uniform and scalable single-layer Mo1- xW xS2 alloys by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The amount of W content ( x) in the Mo1- xW xS2 alloy is systemically controlled by the co-sputtering technique. The post-laser process allows layer-by-layer thinning of the Mo1- xW xS2 alloys down to a single-layer; such a layer exhibits tunable properties with the optical band gap ranging from 1.871 to 1.971 eV with variation in the W content, x = 0 to 1. Moreover, the predominant exciton complexes, trions, are transitioned to neutral excitons with increasing W concentration; this is attributed to the decrease in excessive charge carriers with an increase in the W content of the alloy. Photoluminescence (PL) and Raman mapping analyses suggest that the laser-thinning of the Mo1- xW xS2 alloys is a self-limiting process caused by heat dissipation to the substrate, resulting in spatially uniform single-layer Mo1- xW xS2 alloy films. Our findings present a promising path for the fabrication of large-scale single-layer 2D TMD alloys and the design of versatile optoelectronic devices.

12.
Nat Nanotechnol ; 13(3): 198-203, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29402977

RESUMEN

The breaking of symmetry across an oxide heterostructure causes the electronic orbitals to be reconstructed at the interface into energy states that are different from their bulk counterparts 1 . The detailed nature of the orbital reconstruction critically affects the spatial confinement and the physical properties of the electrons occupying the interfacial orbitals2-4. Using an example of two-dimensional electron liquids forming at LaAlO3/SrTiO3 interfaces5,6 with different crystal symmetry, we show that the selective orbital occupation and spatial quantum confinement of electrons can be resolved with subnanometre resolution using inline electron holography. For the standard (001) interface, the charge density map obtained by inline electron holography shows that the two-dimensional electron liquid is confined to the interface with narrow spatial extension (~1.0 ± 0.3 nm in the half width). On the other hand, the two-dimensional electron liquid formed at the (111) interface shows a much broader spatial extension (~3.3 ± 0.3 nm) with the maximum density located ~2.4 nm away from the interface, in excellent agreement with density functional theory calculations.

13.
Nano Lett ; 17(11): 6676-6683, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949550

RESUMEN

Epitaxial growth suffers from the mismatches in lattice and dangling bonds arising from different crystal structures or unit cell parameters. Here, we demonstrate the epitaxial growth of 2D MoS2 ribbon on 1D CdS nanowires (NWs) via surface and subsurface defects. The interstitial Cd0 in the (12̅10) crystal plane of the [0001]-oriented CdS NWs are found to serve as nucleation sites for interatomically bonded [001]-oriented MoS2, where the perfect lattice match (∼99.7%) between the (101̅1) plane of CdS and the (002)-faceted in-plane MoS2 result in coaxial MoS2 ribbon/CdS NWs heterojunction. The coaxial but heterotropic epitaxial MoS2 ribbon on the surface of CdS NWs induces delocalized interface states that facilitate charge transport and the reduced surface state. A less than 5-fold ribbon width of MoS2 as hydrogen evolution cocatalyst exhibits a ∼10-fold H2 evolution enhancement than state of the art Pt in an acidic electrolyte, and apparent quantum yields of 79.7% at 420 nm, 53.1% at 450 nm, and 9.67% at 520 nm, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...