Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2582, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788304

RESUMEN

Nanofiber networks comprising polymer-metal core-shell structures exhibit several advantages, such as high uniformities and considerable flexibilities. Additionally, the flexibility of the nanofiber network may be further enhanced by engineering the network topology. Therefore, in this study, the topologies of polyvinylidene fluoride (PVDF)-Pt core-shell nanofiber (CS NF) networks were engineered, and their performances as flexible transparent electrodes were comprehensively evaluated. Three distinct topologies of nanofiber networks were induced using circular, square, and rectangular electrode collectors. A highly uniform nanofiber network was obtained using the square electrode collector, which generated a high density of nanofiber junctions (nodes). Consequently, this nanofiber network exhibited the smallest sheet resistance [Formula: see text] and lowest optical transmittance [Formula: see text] among the three CS NF networks. In contrast, nanofiber bundles were frequently formed in the randomly aligned CS NF network prepared using the circular electrode collector, reducing the node density. As a result, it simultaneously exhibited a very small [Formula: see text] and high [Formula: see text], generating the largest percolation figure of merit [Formula: see text]. Under certain strain directions, the CS NF network with the engineered topology exhibited a significantly enhanced mechanical durability. Finally, a flexible piezoelectric pressure sensor with CS NF network electrodes was fabricated and its sensing performance was excellent.

2.
Clin Shoulder Elb ; 21(3): 138-144, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33330167

RESUMEN

BACKGROUND: Subacromial erosion remains a major concern after surgical fixation of acromioclavicular (AC) joint using a clavicular hook plate. To minimize postoperative subacromial erosion, we investigated the structural relationship between distal clavicle and acromion around the AC joint by considering the surgical fixation of the joint using the hook plate technique. METHODS: Computed tomography scans of 101 AC joints without any inherent pathology were analyzed. The angle between the distal clavicle and acromion around the AC joint (AC angle), depth of the acromion, differences in height between distal clavicle and acromion (AC height difference), and thickness of distal clavicle and acromion at the AC joint were measured. Descriptive statistics were calculated for each anatomical parameter, and all results were compared between gender groups. RESULTS: The mean AC angle was 17.1°(range, -8.0° to 39.0°), and the mean AC height difference was 3.5 mm (range, -0.7 to 8.7 mm). Both factors showed very high variability (coefficients of variation=62.6% and 46.6%, respectively). The mean AC angle was significantly higher in the female gender than in the male gender (19.8° vs. 13.8°, p=0.048). The mean acromion thickness and distal clavicular thickness were both significantly thinner in the female group than in the male group (p<0.001). CONCLUSIONS: Taken together, we believe our results might be helpful in minimizing postoperative subacromial erosion when performing surgical fixation of the AC joint using the hook plate, and be valuable in improving future design of the hook plate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...