Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Adv Mater ; 34(32): e2202866, 2022 Aug.
Article En | MEDLINE | ID: mdl-35700272

The desire to enhance the efficiency of organic light-emitting devices (OLEDs) has driven to the investigation of advanced materials with fascinating properties. In this work, the efficiency of top-emission OLEDs (TEOLEDs) is enhanced by introducing ampicillin microstructures (Amp-MSs) with dual phases (α-/ß-phase) that induce photoluminescence (PL) and electroluminescence (EL). Moreover, Amp-MSs can adjust the charge balance by Fermi level (EF ) alignment, thereby decreasing the leakage current. The decrease in the wave-guided modes can enhance the light outcoupling through optical scattering. The resulting TEOLED demonstrates a record-high external quantum efficiency (EQE) (maximum: 68.7% and average: 63.4% at spectroradiometer; maximum: 44.8% and average: 42.6% at integrating sphere) with a wider color gamut (118%) owing to the redshift of the spectrum by J-aggregation. Deconvolution of the EL intensities is performed to clarify the contribution of Amp-MSs to the device EQE enhancement (optical scattering by Amp-MSs: 17.0%, PL by radiative energy transfer: 9.1%, and EL by J-aggregated excitons: 4.6%). The proposed TEOLED outperforms the existing frameworks in terms of device efficiency.

3.
Sci Rep ; 12(1): 2300, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-35145146

Herein, an unprecedented report is presented on the incorporation of size-dependent gold nanoparticles (AuNPs) with polyvinylpyrrolidone (PVP) capping into a conventional hole transport layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The hole transport layer blocks ion-diffusion/migration in methylammonium-lead-bromide (MAPbBr3)-based perovskite light-emitting diodes (PeLEDs) as a modified interlayer. The PVP-capped 90 nm AuNP device exhibited a seven-fold increase in efficiency (1.5%) as compared to the device without AuNPs (0.22%), where the device lifetime was also improved by 17-fold. This advancement is ascribed to the far-field scattering of AuNPs, modified work function and carrier trapping/detrapping. The improvement in device lifetime is attributed to PVP-capping of AuNPs which prevents indium diffusion into the perovskite layer and surface ion migration into PEDOT:PSS through the formation of induced electric dipole. The results also indicate that using large AuNPs (> 90 nm) reduces exciton recombination because of the trapping of excess charge carriers due to the large surface area.

5.
Nat Commun ; 12(1): 2864, 2021 May 17.
Article En | MEDLINE | ID: mdl-34001906

Stretchable organic light-emitting diodes are ubiquitous in the rapidly developing wearable display technology. However, low efficiency and poor mechanical stability inhibit their commercial applications owing to the restrictions generated by strain. Here, we demonstrate the exceptional performance of a transparent (molybdenum-trioxide/gold/molybdenum-trioxide) electrode for buckled, twistable, and geometrically stretchable organic light-emitting diodes under 2-dimensional random area strain with invariant color coordinates. The devices are fabricated on a thin optical-adhesive/elastomer with a small mechanical bending strain and water-proofed by optical-adhesive encapsulation in a sandwiched structure. The heat dissipation mechanism of the thin optical-adhesive substrate, thin elastomer-based devices or silicon dioxide nanoparticles reduces triplet-triplet annihilation, providing consistent performance at high exciton density, compared with thick elastomer and a glass substrate. The performance is enhanced by the nanoparticles in the optical-adhesive for light out-coupling and improved heat dissipation. A high current efficiency of ~82.4 cd/A and an external quantum efficiency of ~22.3% are achieved with minimum efficiency roll-off.

6.
J Colloid Interface Sci ; 584: 520-527, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33129161

A novel hierarchical solution-processed fractional structured molybdenum oxide (MoO3) catalyst is fabricated from tricarbonyltris (propionitrile) molybdenum and used as the counter electrode of all-solid-state fiber-shaped dye-sensitized solar cells (S-FDSSC). The Tafel plot results and electrical impedance spectroscopy suggest that the use of the fractional structured MoO3 catalyst enhances the efficiency of the reduction of I3- to 3I- at the counter electrode/electrolyte interface. Because of the improvements of the short-current circuit and fill factor, the power conversion efficiency of the MoO3-modified S-FDSSC improves by 60% compared with that of the reference S-FDSSC. In addition, because of the robust fractional structure of MoO3, the MoO3-modified S-FDSSC maintains 90% and 95% of efficiency after 350-fold bending and the incident light angle dependency test, respectively. At 65% humidity and at 65 °C, the power conversion efficiency of the MoO3-modified device decreases by <20% after 350 h of storage, while that of the reference device drops by more than 70%.

7.
Viruses ; 11(3)2019 03 12.
Article En | MEDLINE | ID: mdl-30871031

The genetically engineered M13 bacteriophage (M13 phage), developed via directed evolutionary screening process, can improve the sensitivity of sensors because of its selective binding to a target material. Herein, we propose a screening method to develop a selective and sensitive bioreporter for toxic material based on genetically engineered M13 phage. The paraquat (PQ)-binding M13 phage, developed by directed evolution, was used. The binding affinities of the PQ-binding M13 phage to PQ and similar molecules were analyzed using isothermal titration calorimetry (ITC). Based on the isotherms measured by ITC, binding affinities were calculated using the one-site binding model. The binding affinity was 5.161 × 10-7 for PQ, and 3.043 × 10-7 for diquat (DQ). The isotherm and raw ITC data show that the PQ-binding M13 phage does not selectively bind to difenzoquat (DIF). The phage biofilter experiment confirmed the ability of PQ-binding M13 bacteriophage to bind PQ. The surface-enhanced Raman scattering (SERS) platform based on the bioreporter, PQ-binding M13 phage, exhibited 3.7 times the signal intensity as compared with the wild-type-M13-phage-coated platform.


Bacteriophage M13/genetics , Biosensing Techniques/methods , Directed Molecular Evolution , Genetic Engineering , Virus Attachment , High-Throughput Screening Assays , Paraquat , Sensitivity and Specificity , Spectrum Analysis, Raman
8.
ACS Appl Mater Interfaces ; 8(48): 32992-32997, 2016 Dec 07.
Article En | MEDLINE | ID: mdl-27934190

A novel small-molecule electrolyte, 1,1'-bis(4-hydroxypropyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-OH), containing a mixture of PTB7:PC71BM has been designed and synthesized as a cathode buffer layer for inverted polymer solar cells (iPSCs). The molecular structure of this new compound comprises a viologen skeleton with hydroxyl group terminals. While the viologen unit is responsible for generating a favorable interface dipole, the two terminal hydroxyl groups of V-OH may generate a synergy effect in the magnitude of the interface dipole. Consequently, the devices containing the V-OH interlayer exhibited a power conversion efficiency (PCE) of 9.13% (short circuit current = 17.13 mA/cm2, open circuit voltage = 0.75 V, fill factor = 71.1%). The PCE of the devices with V-OH exhibited better long-term stability compared to that of the devices without V-OH. Thus, we found that it is possible to enhance the efficiency of PSCs by a simple approach without the need for complicated methods of device fabrication.

9.
ACS Appl Mater Interfaces ; 7(5): 3335-41, 2015 Feb 11.
Article En | MEDLINE | ID: mdl-25611078

Polyviologen (PV) derivatives are known materials used for adjusting the work function (WF) of cathodes by reducing the electron injection/collection barrier at the cathode interface. To tune and improve device performance, we introduce different types of counteranions (CAs), such as bromide, tetrafluoroborate, and tetraphenylborate, to a PV derivative. The effective WF of the Al cathode is shown to depend on the size of the CA, indicating that a Schottky barrier can be modulated by the size of the CA. Through the increased size of the CA from bromide to tetraphenylborate, the effective WF of the Al cathode is gradually decreased, indicating a decreased Schottky barrier at the cathode interface. In addition, the change of the power conversion efficiency (PCE) and the short circuit current (Jsc) value show good correlation with the change of the WF of the cathode, signifying the typical transition from a Schottky to an Ohmic contact. The turn-on electric field of the electron-only device without PV was 0.21 MV/cm, which is dramatically higher than those of devices with PV-X (0.07 MV/cm for PV-Br, 0.06 MV/cm for PV-BF4, and 0.05 MV/cm for PV-BPh4) This is also coincident with a decrease in the Schottky barrier at the cathode interface. The device ITO/PEDOT/P3HT:PCBM/PV/Al, with a thin layer of PV derivative and tetraphenylborate CA as the cathode buffer layer, has the highest PCE of 4.02%, an open circuit voltage of 0.64 V, a Jsc of 11.6 mA/cm2, and a fill factor of 53.0%. Our results show that it is possible to improve the performance of polymer solar cells by choosing different types of CAs in PV derivatives without complicated synthesis and to refine the electron injection/collection barrier height at the cathode interface.

10.
ACS Appl Mater Interfaces ; 5(14): 6508-13, 2013 Jul 24.
Article En | MEDLINE | ID: mdl-23820385

A nonconjugated anionic polyelectrolyte, poly(sodium 4-styrenesulfonate) (PSS-Na), was applied to the optoelectronic devices as an interfacial layer (IFL) at the semiconducting layer/cathode interface. The ultraviolet photoelectron spectroscopy and the Kelvin probe microscopy studies support the formation of a favorable interface dipole at the organic/cathode interface. For polymer light-emitting diodes (PLEDs), the maximum luminance efficiency (LEmax) and the turn-on voltage (Von) of the device with a layer of PSS-Na spin-coated from the concentration of 0.5 mg/mL were 3.00 cd/A and 5.5 V, which are dramatically improved than those of the device without an IFL (LEmax = 0.316 cd/A, Von = 9.5 V). This suggests that the PSS-Na film at the emissive layer/cathode interface improves the electron injection ability. As for polymer solar cells (PSCs), the power conversion efficiency (PCE) of the device with a layer of PSS-Na spin-coated from the concentration of 0.5 mg/mL was 2.83%, which is a 16% increase compared to that of the PSC without PSS-Na. The PCE improvement is mainly due to the enhancement of the short-circuit current (12% increase). The results support that the electron collection and transporting increase by the introduction of the PSS-Na film at the photoactive layer/cathode interface. The improvement of the efficiency of the PLED and PSC is due to the reduction of the Schottky barrier by the formation of a favorable interface as well as the better Ohmic contact at the cathode interface.

11.
Phys Rev Lett ; 108(9): 093001, 2012 Mar 02.
Article En | MEDLINE | ID: mdl-22463629

Ultrafast atomic processes, such as excitation and ionization occurring on the femtosecond or shorter time scale, were explored by employing attosecond high-harmonic pulses. With the absorption of a suitable high-harmonic photon a He atom was ionized, or resonantly excited with further ionization by absorbing a number of infrared photons. The electron wave packets liberated by the two processes generated an interference containing the information on ultrafast atomic dynamics. The attosecond electron wave packet, including the phase, from the ground state was reconstructed first and, subsequently, that from the 1s3p state was retrieved by applying the holographic technique to the photoelectron spectra comprising the interference between the two ionization paths. The reconstructed electron wave packet revealed details of the ultrafast photoionization dynamics, such as the instantaneous two-photon ionization rate.

12.
Opt Lett ; 34(15): 2342-4, 2009 Aug 01.
Article En | MEDLINE | ID: mdl-19649091

Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses.

13.
Opt Lett ; 34(3): 235-7, 2009 Feb 01.
Article En | MEDLINE | ID: mdl-19183616

A soft x-ray microscope based on a phase-reversal zone plate was constructed and tested using high harmonic radiation as a coherent light source. The 61st harmonic centered at 13.3 nm was optimized in spectral sharpness and intensity by controlling the incident laser energy and chirp. A phase-reversal zone plate made of polymethyl methacrylate more than doubled the first-order efficiency. The nano patterns, imaged on an x-ray CCD with a magnification of 650, showed that the measured resolution of the microscope was better than 100 nm.

14.
Opt Express ; 16(17): 12624-31, 2008 Aug 18.
Article En | MEDLINE | ID: mdl-18711499

We have developed a practical solution to implement the direct locking method for the carrier-envelope phase (CEP) stabilization of femtosecond laser pulses and achieved 24-hour CEP stabilization without realignment of any optical components. The direct locking method realizes the CEP stabilization in the time domain by directly quenching the beat signal from an f-to-2f interferometer and, thereby, locking every pulse to a same CEP. We have accomplished the long-term CEP stabilization using commercially available standard feedback electronics, and maintained the CEP stabilization with low jitter without using any frequency-analyzing components, greatly facilitating the accessibility of the CEP stabilization.


Interferometry/instrumentation , Lasers , Lighting/instrumentation , Oscillometry/instrumentation , Equipment Design , Equipment Failure Analysis , Feedback , Reproducibility of Results , Sensitivity and Specificity
15.
Opt Express ; 16(7): 4465-70, 2008 Mar 31.
Article En | MEDLINE | ID: mdl-18542543

The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.


Data Compression/methods , Lasers , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis
...