Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 135
1.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38768347

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Touch , Virtual Reality , Wireless Technology , Humans , Wireless Technology/instrumentation , Touch/physiology , Skin , Robotics/instrumentation , Robotics/methods
2.
Theranostics ; 14(6): 2442-2463, 2024.
Article En | MEDLINE | ID: mdl-38646654

Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.


Breast Neoplasms , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Animals , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology
3.
Science ; 383(6687): 1096-1103, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452063

Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.


Absorbable Implants , Anastomotic Leak , Gastrointestinal Tract , Ultrasonics , Animals , Humans , Homeostasis , Stomach , Gastrointestinal Tract/surgery , Anastomotic Leak/diagnostic imaging , Models, Animal
4.
BMC Plant Biol ; 24(1): 215, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532331

BACKGROUND: Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation. RESULTS: Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy. CONCLUSIONS: Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.


MicroRNAs , Oryza , Plant Dormancy/genetics , Oryza/genetics , Transcriptome , Plant Growth Regulators/metabolism , Germination/genetics , Seeds/genetics , Abscisic Acid/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , MicroRNAs/metabolism , Gene Expression Regulation, Plant
5.
Light Sci Appl ; 13(1): 53, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378579

Non-interleaved chiral metasurfaces for high-spatial-resolution polarimetry are proposed and demonstrated. Furthermore, a convolutional neural network is incorporated to analyze interferometric images with the polarization state of light, and it results in accurate Stokes parameters.

6.
Mitochondrial DNA B Resour ; 9(1): 104-108, 2024.
Article En | MEDLINE | ID: mdl-38239371

Phlomoides kirghisorum Adylov, Kamelin & Makhmedov 1987 is one of the poorly studied narrow endemics of Fergana Valley, one of Central Asia's most densely human-populated regions. In this study, we sequenced, assembled, and characterized the complete plastome of P. kirghisorum by using high-throughput Illumina reads. The complete chloroplast genome consisted of 151,324 bp, including a large single-copy (LSC) region (82,775 bp), a small single-copy (SSC) region (17,357 bp), and two inverted repeat regions (25,596 bp each). In the chloroplast genome of P. kirghisorum, 133 genes were detected, comprising 88 protein-encoding genes, eight ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. The phylogenetic analysis indicated that the genetic relationship between P. kirghisorum and P. alpina was very close. This study provides basic information to explore the molecular evolution of the Phlomoides genus and the Lamiaceae family.

7.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Article En | MEDLINE | ID: mdl-37973946

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Intensive Care Units, Neonatal , Infant, Newborn , Humans , Monitoring, Physiologic
8.
J Exp Clin Cancer Res ; 42(1): 292, 2023 Nov 04.
Article En | MEDLINE | ID: mdl-37924112

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by aggressive growth and a high propensity for recurrence and metastasis. Simultaneous overexpression of c-MET and EGFR in TNBC is associated with worse clinicopathological features and unfavorable outcomes. Although the development of new c-MET inhibitors and the emergence of 3rd-generation EGFR inhibitors represent promising treatment options, the high costs involved limit the accessibility of these drugs. In the present study, we sought to investigate the therapeutic potential of doxazosin (DOXA), a generic drug for benign prostate hyperplasia, in targeting TNBC. METHODS: The effect of DOXA on TNBC cell lines in vitro was evaluated in terms of cell viability, apoptosis, c-MET/EGFR signaling pathway, molecular docking studies and impact on cancer stem cell (CSC)-like properties. An in vivo metastatic model with CSCs was used to evaluate the efficacy of DOXA. RESULTS: DOXA exhibits notable anti-proliferative effects on TNBC cells by inducing apoptosis via caspase activation. Molecular docking studies revealed the direct interaction of DOXA with the tyrosine kinase domains of c-MET and EGFR. Consequently, DOXA disrupts important survival pathways including AKT, MEK/ERK, and JAK/STAT3, while suppressing CSC-like characteristics including CD44high/CD24low subpopulations, aldehyde dehydrogenase 1 (ALDH1) activity and formation of mammospheres. DOXA administration was found to suppress tumor growth, intra- and peri-tumoral angiogenesis and distant metastasis in an orthotopic allograft model with CSC-enriched populations. Furthermore, no toxic effects of DOXA were observed in hepatic or renal function. CONCLUSIONS: Our findings highlight the potential of DOXA as a therapeutic option for metastatic TNBC, warranting further investigation.


Doxazosin , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Doxazosin/pharmacology , Doxazosin/therapeutic use , ErbB Receptors/antagonists & inhibitors , Molecular Docking Simulation , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/drug therapy
10.
Sci Rep ; 13(1): 12187, 2023 08 24.
Article En | MEDLINE | ID: mdl-37620342

The emergence of large language models has led to the development of powerful tools such as ChatGPT that can produce text indistinguishable from human-generated work. With the increasing accessibility of such technology, students across the globe may utilize it to help with their school work-a possibility that has sparked ample discussion on the integrity of student evaluation processes in the age of artificial intelligence (AI). To date, it is unclear how such tools perform compared to students on university-level courses across various disciplines. Further, students' perspectives regarding the use of such tools in school work, and educators' perspectives on treating their use as plagiarism, remain unknown. Here, we compare the performance of the state-of-the-art tool, ChatGPT, against that of students on 32 university-level courses. We also assess the degree to which its use can be detected by two classifiers designed specifically for this purpose. Additionally, we conduct a global survey across five countries, as well as a more in-depth survey at the authors' institution, to discern students' and educators' perceptions of ChatGPT's use in school work. We find that ChatGPT's performance is comparable, if not superior, to that of students in a multitude of courses. Moreover, current AI-text classifiers cannot reliably detect ChatGPT's use in school work, due to both their propensity to classify human-written answers as AI-generated, as well as the relative ease with which AI-generated text can be edited to evade detection. Finally, there seems to be an emerging consensus among students to use the tool, and among educators to treat its use as plagiarism. Our findings offer insights that could guide policy discussions addressing the integration of artificial intelligence into educational frameworks.


Artificial Intelligence , Communication , Humans , Universities , Schools , Perception
11.
Diagnostics (Basel) ; 13(15)2023 Aug 01.
Article En | MEDLINE | ID: mdl-37568918

BACKGROUND: the objective of this study is to evaluate the predictive power of the survival model using deep learning of diffusion-weighted images (DWI) in patients with non-small-cell lung cancer (NSCLC). METHODS: DWI at b-values of 0, 100, and 700 sec/mm2 (DWI0, DWI100, DWI700) were preoperatively obtained for 100 NSCLC patients who underwent curative surgery (57 men, 43 women; mean age, 62 years). The ADC0-100 (perfusion-sensitive ADC), ADC100-700 (perfusion-insensitive ADC), ADC0-100-700, and demographic features were collected as input data and 5-year survival was collected as output data. Our survival model adopted transfer learning from a pre-trained VGG-16 network, whereby the softmax layer was replaced with the binary classification layer for the prediction of 5-year survival. Three channels of input data were selected in combination out of DWIs and ADC images and their accuracies and AUCs were compared for the best performance during 10-fold cross validation. RESULTS: 66 patients survived, and 34 patients died. The predictive performance was the best in the following combination: DWI0-ADC0-100-ADC0-100-700 (accuracy: 92%; AUC: 0.904). This was followed by DWI0-DWI700-ADC0-100-700, DWI0-DWI100-DWI700, and DWI0-DWI0-DWI0 (accuracy: 91%, 81%, 76%; AUC: 0.889, 0.763, 0.711, respectively). Survival prediction models trained with ADC performed significantly better than the one trained with DWI only (p-values < 0.05). The survival prediction was improved when demographic features were added to the model with only DWIs, but the benefit of clinical information was not prominent when added to the best performing model using both DWI and ADC. CONCLUSIONS: Deep learning may play a role in the survival prediction of lung cancer. The performance of learning can be enhanced by inputting precedented, proven functional parameters of the ADC instead of the original data of DWIs only.

12.
Adv Sci (Weinh) ; : e2301232, 2023 Jun 25.
Article En | MEDLINE | ID: mdl-37357139

Magnetic resonance imaging (MRI) is widely used in clinical care and medical research. The signal-to-noise ratio (SNR) in the measurement affects parameters that determine the diagnostic value of the image, such as the spatial resolution, contrast, and scan time. Surgically implanted radiofrequency coils can increase SNR of subsequent MRI studies of adjacent tissues. The resulting benefits in SNR are, however, balanced by significant risks associated with surgically removing these coils or with leaving them in place permanently. As an alternative, here the authors report classes of implantable inductor-capacitor circuits made entirely of bioresorbable organic and inorganic materials. Engineering choices for the designs of an inductor and a capacitor provide the ability to select the resonant frequency of the devices to meet MRI specifications (e.g., 200 MHz at 4.7 T MRI). Such devices enhance the SNR and improve the associated imaging capabilities. These simple, small bioelectronic systems function over clinically relevant time frames (up to 1 month) at physiological conditions and then disappear completely by natural mechanisms of bioresorption, thereby eliminating the need for surgical extraction. Imaging demonstrations in a nerve phantom and a human cadaver suggest that this technology has broad potential for post-surgical monitoring/evaluation of recovery processes.

13.
Cancer Med ; 12(15): 15933-15944, 2023 08.
Article En | MEDLINE | ID: mdl-37350558

BACKGROUND: Carbohydrate antigen (CA) 19-9 is a known pancreatic cancer (PC) biomarker, but is not commonly used for general screening due to its low sensitivity and specificity. This study aimed to develop a serum metabolites-based diagnostic calculator for detecting PC with high accuracy. METHODS: A targeted quantitative approach of direct flow injection-tandem mass spectrometry combined with liquid chromatography-tandem mass spectrometry was employed for metabolomic analysis of serum samples using an Absolute IDQ™ p180 kit. Integrated metabolomic analysis was performed on 241 pooled or individual serum samples collected from healthy donors and patients from nine disease groups, including chronic pancreatitis, PC, other cancers, and benign diseases. Orthogonal partial least squares discriminant analysis (OPLS-DA) based on characteristics of 116 serum metabolites distinguished patients with PC from those with other diseases. Sparse partial least squares discriminant analysis (SPLS-DA) was also performed, incorporating simultaneous dimension reduction and variable selection. Predictive performance between discrimination models was compared using a 2-by-2 contingency table of predicted probabilities obtained from the models and actual diagnoses. RESULTS: Predictive values obtained through OPLS-DA for accuracy, sensitivity, specificity, balanced accuracy, and area under the receiver operating characteristic curve (AUC) were 0.9825, 0.9916, 0.9870, 0.9866, and 0.9870, respectively. The number of metabolite candidates was narrowed to 76 for SPLS-DA. The SPLS-DA-obtained predictive values for accuracy, sensitivity, specificity, balanced accuracy, and AUC were 0.9773, 0.9649, 0.9832, 0.9741, and 0.9741, respectively. CONCLUSIONS: We successfully developed a 76 metabolome-based diagnostic panel for detecting PC that demonstrated high diagnostic performance in differentiating PC from other diseases.


Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/metabolism , Metabolomics/methods , Metabolome , Tandem Mass Spectrometry , Biomarkers, Tumor/metabolism , Pancreatic Neoplasms
14.
Cell Mol Life Sci ; 80(5): 132, 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37185776

We sought to investigate the utility of ebastine (EBA), a second-generation antihistamine with potent anti-metastatic properties, in the context of breast cancer stem cell (BCSC)-suppression in triple-negative breast cancer (TNBC). EBA binds to the tyrosine kinase domain of focal adhesion kinase (FAK), blocking phosphorylation at the Y397 and Y576/577 residues. FAK-mediated JAK2/STAT3 and MEK/ERK signaling was attenuated after EBA challenge in vitro and in vivo. EBA treatment induced apoptosis and a sharp decline in the expression of the BCSC markers ALDH1, CD44 and CD49f, suggesting that EBA targets BCSC-like cell populations while reducing tumor bulk. EBA administration significantly impeded BCSC-enriched tumor burden, angiogenesis and distant metastasis while reducing MMP-2/-9 levels in circulating blood in vivo. Our findings suggest that EBA may represent an effective therapeutic for the simultaneous targeting of JAK2/STAT3 and MEK/ERK for the treatment of molecularly heterogeneous TNBC with divergent profiles. Further investigation of EBA as an anti-metastatic agent for the treatment of TNBC is warranted.


Triple Negative Breast Neoplasms , Humans , Focal Adhesion Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Mitogen-Activated Protein Kinase Kinases , Cell Proliferation
15.
Nanoscale Adv ; 5(10): 2767-2775, 2023 May 16.
Article En | MEDLINE | ID: mdl-37205284

NO2 is a major air pollutant that should be monitored due to its harmful effects on the environment and human health. Semiconducting metal oxide-based gas sensors have been widely explored owing to their superior sensitivity towards NO2, but their high operating temperature (>200 °C) and low selectivity still limit their practical use in sensor devices. In this study, we decorated graphene quantum dots (GQDs) with discrete band gaps onto tin oxide nanodomes (GQD@SnO2 nanodomes), enabling room temperature (RT) sensing towards 5 ppm NO2 gas with a noticeable response ((Ra/Rg) - 1 = 4.8), which cannot be matched using pristine SnO2 nanodomes. In addition, the GQD@SnO2 nanodome based gas sensor shows an extremely low detection limit of 1.1 ppb and high selectivity compared to other pollutant gases (H2S, CO, C7H8, NH3, and CH3COCH3). The oxygen functional groups in GQDs specifically enhance NO2 accessibility by increasing the adsorption energy. Strong electron transfer from SnO2 to GQDs widens the electron depletion layer at SnO2, thereby improving the gas response over a broad temperature range (RT-150 °C). This result provides a basic perspective for utilizing zero-dimensional GQDs in high-performance gas sensors operating over a wide range of temperatures.

16.
Sci Adv ; 9(6): eadd2315, 2023 02 10.
Article En | MEDLINE | ID: mdl-36753550

Recent studies have documented racial discrimination in online interactions, mirroring the historic bias observed offline. The sharing economy is especially vulnerable due to greater dependence on mutual trust in sharing a ride, residence, or date with a stranger. These services rely on user recommendations to build trust, but the effects of these peer evaluations on racial bias are only beginning to be explored. Using data from Airbnb, we examine in-group preference for same-race hosts as well as same-race recommendations. The unexpected result is that these two manifestations of racial bias are offsetting, not reinforcing. White guests largely overcame their racial bias in host selection when hosts were endorsed by previous white guests. Moreover, we found no evidence of racial bias in the affective enthusiasm of endorsements, which suggests that the preference for same-race endorsements is motivated by the race of the recommender, not the content of the recommendation.


Racism , Humans , Racism/prevention & control , Trust
17.
J Am Chem Soc ; 145(8): 4647-4658, 2023 03 01.
Article En | MEDLINE | ID: mdl-36745678

Cancer stem cells (CSCs) are associated with the invasion and metastatic relapse of various cancers. However, current cancer therapies are limited to targeting the bulk of primary tumor cells while remaining the CSCs untouched. Here, we report a new proton (H+) modulation approach to selectively eradicate CSCs via cutting off the H+ leaks on the inner mitochondrial membrane (IMM). Based on the fruit extract of Gardenia jasminoides, a multimodal molecule channel blocker with high biosafety, namely, Bo-Mt-Ge, is developed. Importantly, in this study, we successfully identify that mitochondrial uncoupling protein UCP2 is closely correlated with the stemness of CSCs, which may offer a new perspective for selective CSC drug discovery. Mechanistic studies show that Bo-Mt-Ge can specifically inhibit the UCP2 activities, decrease the H+ influx in the matrix, regulate the electrochemical gradient, and deplete the endogenous GSH, which synergistically constitute a unique MoA to active apoptotic CSC death. Intriguingly, Bo-Mt-Ge also counteracts the therapeutic resistance via a two-pronged tactic: drug efflux pump P-glycoprotein downregulation and antiapoptotic factor (e.g., Bcl-2) inhibition. With these merits, Bo-Mt-Ge proved to be one of the safest and most efficacious anti-CSC agents, with ca. 100-fold more potent than genipin alone in vitro and in vivo. This study offers new insights and promising solutions for future CSC therapies in the clinic.


Mitochondrial Membranes , Neoplasms , Humans , Mitochondrial Membranes/metabolism , Protons , Neoplasms/pathology , Neoplastic Stem Cells/metabolism
18.
Nat Commun ; 14(1): 1024, 2023 02 23.
Article En | MEDLINE | ID: mdl-36823288

Soft, wireless physiological sensors that gently adhere to the skin are capable of continuous clinical-grade health monitoring in hospital and/or home settings, of particular value to critically ill infants and other vulnerable patients, but they present risks for injury upon thermal failure. This paper introduces an active materials approach that automatically minimizes such risks, to complement traditional schemes that rely on integrated sensors and electronic control circuits. The strategy exploits thin, flexible bladders that contain small volumes of liquid with boiling points a few degrees above body temperature. When the heat exceeds the safe range, vaporization rapidly forms highly effective, thermally insulating structures and delaminates the device from the skin, thereby eliminating any danger to the skin. Experimental and computational thermomechanical studies and demonstrations in a skin-interfaced mechano-acoustic sensor illustrate the effectiveness of this simple thermal safety system and suggest its applicability to nearly any class of skin-integrated device technology.


Electronics , Skin , Humans , Skin/chemistry , Body Temperature , Hot Temperature , Software
19.
Proc Natl Acad Sci U S A ; 120(6): e2217828120, 2023 02 07.
Article En | MEDLINE | ID: mdl-36716364

Thermal sensations contribute to our ability to perceive and explore the physical world. Reproducing these sensations in a spatiotemporally programmable manner through wireless computer control could enhance virtual experiences beyond those supported by video, audio and, increasingly, haptic inputs. Flexible, lightweight and thin devices that deliver patterns of thermal stimulation across large areas of the skin at any location of the body are of great interest in this context. Applications range from those in gaming and remote socioemotional communications, to medical therapies and physical rehabilitation. Here, we present a set of ideas that form the foundations of a skin-integrated technology for power-efficient generation of thermal sensations across the skin, with real-time, closed-loop control. The systems exploit passive cooling mechanisms, actively switchable thermal barrier interfaces, thin resistive heaters and flexible electronics configured in a pixelated layout with wireless interfaces to portable devices, the internet and cloud data infrastructure. Systematic experimental studies and simulation results explore the essential mechanisms and guide the selection of optimized choices in design. Demonstration examples with human subjects feature active thermoregulation, virtual social interactions, and sensory expansion.


Skin , Virtual Reality , Humans , Electronics , Thermosensing , Communication
20.
J Biomed Inform ; 137: 104268, 2023 01.
Article En | MEDLINE | ID: mdl-36513332

Neutropenia and its complications are major adverse effects of cytotoxic chemotherapy. The time to recovery from neutropenia varies from patient to patient, and cannot be easily predicted even by experts. Therefore, we trained a deep learning model using data from 525 pediatric patients with solid tumors to predict the day when patients recover from severe neutropenia after high-dose chemotherapy. We validated the model with data from 99 patients and compared its performance to those of clinicians. The accuracy of the model at predicting the recovery day, with a 1-day error, was 76%; its performance was better than those of the specialist group (58.59%) and the resident group (32.33%). In addition, 80% of clinicians changed their initial predictions at least once after the model's prediction was conveyed to them. In total, 86 prediction changes (90.53%) improved the recovery day estimate.


Deep Learning , Neoplasms , Neutropenia , Humans , Child , Neutrophils , Neutropenia/chemically induced , Neoplasms/drug therapy
...