Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(17): 6674-6687, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042788

RESUMEN

We demonstrate colloidal, layer-by-layer growth of metal oxide shells on InP quantum dots (QDs) at room temperature. We show with computational modeling that native InP QD surface oxides give rise to nonradiative pathways due to the presence of surface-localized dark states near the band edges. Replacing surface indium with zinc to form a ZnO shell results in reduced nonradiative decay and a density of states at the valence band edge that resembles defect-free, stoichiometric InP. We then developed a synthetic strategy using stoichiometric amounts of common atomic layer deposition precursors in alternating cycles to achieve layer-by-layer growth. Metal-oxide-shelled InP QDs show bulk and local structural perturbations as determined by X-ray diffraction and extended X-ray absorption fine structure spectroscopy. Upon growing ZnSe shells of varying thickness on the oxide-shelled QDs, we observe increased photoluminescence (PL) quantum yields and narrowing of the emission linewidths that we attribute to decreased ion diffusion to the shell, as supported by phosphorus X-ray emission spectroscopy. These results present a versatile strategy to control QD interfaces for novel heterostructure design by leveraging surface oxides. This work also contributes to our understanding of the connections between structural complexity and PL properties in technologically relevant colloidal optoelectronic materials.

2.
J Chem Phys ; 155(8): 084701, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34470352

RESUMEN

We demonstrate fine-tuning of the atomic composition of InP/ZnSe quantum dots (QDs) at the core/shell interface. Specifically, we control the stoichiometry of both anions (P, As, S, and Se) and cations (In and Zn) at the InP/ZnSe core/shell interface and correlate these changes with the resultant steady-state and time-resolved optical properties of the nanocrystals. The use of reactive trimethylsilyl reagents results in surface-limited reactions that shift the nanocrystal stoichiometry to anion-rich and improve epitaxial growth of the shell layer. In general, anion deposition on the InP QD surface results in a redshift in the absorption, quenching of the excitonic photoluminescence, and a relative increase in the intensity of broad trap-based photoluminescence, consistent with delocalization of the exciton wavefunction and relaxation of exciton confinement. Time-resolved photoluminescence data for the resulting InP/ZnSe QDs show an overall small change in the decay dynamics on the ns timescale, suggesting that the relatively low photoluminescence quantum yields may be attributed to the creation of new thermally activated charge trap states and likely a dark population that is inseparable from the emissive QDs. Cluster-model density functional theory calculations show that the presence of core/shell interface anions gives rise to electronic defects contributing to the redshift in the absorption. These results highlight a general strategy to atomistically tune the interfacial stoichiometry of InP QDs using surface-limited reaction chemistry allowing for precise correlations with the electronic structure and photophysical properties.

3.
J Chem Phys ; 151(19): 194702, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757130

RESUMEN

As the commercial display market grows, the demand for low-toxicity, highly emissive, and size-tunable semiconducting nanoparticles has increased. Indium phosphide quantum dots represent a promising solution to these challenges; unfortunately, they typically suffer from low inherent emissivity resulting from charge carrier trapping. Strategies to improve the emissive characteristics of indium phosphide often involve zinc incorporation into or onto the core itself and the fabrication of core/shell heterostructures. InP clusters are high fidelity platforms for studying processes such as cation exchange and surface doping with exogenous ions since these clusters are used as single-source precursors for quantum dot synthesis. Here, we examined the incorporation of zinc and gallium ions in InP clusters and the use of the resultant doped clusters as single-source precursors to emissive heterostructured nanoparticles. Zinc ions were observed to readily react with InP clusters, resulting in partial cation exchange, whereas gallium resisted cluster incorporation. Zinc-doped clusters effectively converted to emissive nanoparticles, with quantum yields strongly correlated with zinc content. On the other hand, gallium-doped clusters failed to demonstrate improvements in quantum dot emission. These results indicate stark differences in the mechanisms associated with aliovalent and isovalent doping and provide insight into the use of doped clusters to make emissive quantum dots.

4.
J Vis Exp ; (147)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31132043

RESUMEN

This text presents a method for the synthesis of In37P20(O2C14H27)51 clusters and their conversion to indium phosphide quantum dots. The In37P20(O2CR)51 clusters have been observed as intermediates in the synthesis of InP quantum dots from molecular precursors (In(O2CR)3, HO2CR, and P(SiMe3)3) and may be isolated as a pure reagent for subsequent study and use as a single-source precursor. These clusters readily convert to crystalline and relatively monodisperse samples of quasi-spherical InP quantum dots when subjected to thermolysis conditions in the absence of additional precursors above 200 °C. The optical properties, morphology, and structure of both the clusters and quantum dots are confirmed using UV-Vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, and powder X-ray diffraction. The molecular symmetry of the clusters is additionally confirmed by solution-phase 31P NMR spectroscopy. This protocol demonstrates the preparation and isolation of atomically-precise InP clusters, and their reliable and scalable conversion to InP QDs.


Asunto(s)
Indio/metabolismo , Fosfinas/metabolismo , Puntos Cuánticos/química , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...