Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 131
1.
Nat Struct Mol Biol ; 31(3): 447-454, 2024 Mar.
Article En | MEDLINE | ID: mdl-38233573

Hepatitis B virus (HBV), a leading cause of developing hepatocellular carcinoma affecting more than 290 million people worldwide, is an enveloped DNA virus specifically infecting hepatocytes. Myristoylated preS1 domain of the HBV large surface protein binds to the host receptor sodium-taurocholate cotransporting polypeptide (NTCP), a hepatocellular bile acid transporter, to initiate viral entry. Here, we report the cryogenic-electron microscopy structure of the myristoylated preS1 (residues 2-48) peptide bound to human NTCP. The unexpectedly folded N-terminal half of the peptide embeds deeply into the outward-facing tunnel of NTCP, whereas the C-terminal half formed extensive contacts on the extracellular surface. Our findings reveal an unprecedented induced-fit mechanism for establishing high-affinity virus-host attachment and provide a blueprint for the rational design of anti-HBV drugs targeting virus entry.


Hepatitis B virus , Symporters , Humans , Hepatitis B virus/genetics , Hepatocytes/metabolism , Protein Binding , Virus Attachment , Peptides/metabolism , Symporters/metabolism , Virus Internalization
2.
Commun Chem ; 6(1): 258, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37989850

Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 µg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.

3.
Nat Commun ; 14(1): 7150, 2023 11 06.
Article En | MEDLINE | ID: mdl-37932263

Hydroxycarboxylic acid receptors (HCAR1, HCAR2, and HCAR3) transduce Gi/o signaling upon biding to molecules such as lactic acid, butyric acid and 3-hydroxyoctanoic acid, which are associated with lipolytic and atherogenic activity, and neuroinflammation. Although many reports have elucidated the function of HCAR2 and its potential as a therapeutic target for treating not only dyslipidemia but also neuroimmune disorders such as multiple sclerosis and Parkinson's disease, the structural basis of ligand recognition and ligand-induced Gi-coupling remains unclear. Here we report three cryo-EM structures of the human HCAR2-Gi signaling complex, each bound with different ligands: niacin, acipimox or GSK256073. All three agonists are held in a deep pocket lined by residues that are not conserved in HCAR1 and HCAR3. A distinct hairpin loop at the HCAR2 N-terminus and extra-cellular loop 2 (ECL2) completely enclose the ligand. These structures also reveal the agonist-induced conformational changes propagated to the G-protein-coupling interface during activation. Collectively, the structures presented here are expected to help in the design of ligands specific for HCAR2, leading to new drugs for the treatment of various diseases such as dyslipidemia and inflammation.


Receptors, G-Protein-Coupled , Signal Transduction , Humans , Carboxylic Acids , Ligands , Receptors, G-Protein-Coupled/metabolism
4.
Nat Commun ; 14(1): 4107, 2023 07 11.
Article En | MEDLINE | ID: mdl-37433790

Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.


Phagocytosis , Receptors, Interleukin-8A , Ligands , Receptors, Interleukin-8A/genetics , Immunity, Innate , Drug Design , Receptors, Interleukin-8B/genetics
5.
Biochem Biophys Res Commun ; 635: 277-282, 2022 12 20.
Article En | MEDLINE | ID: mdl-36308907

X-ray fluorescence holography (XFH) is a relatively new technique capable of providing unique three-dimensional structural information around specific atoms that act as a light source in crystalline samples. So far, XFH has typically been applied to inorganic materials such as dopants in metals and semiconductors. Here, we investigate the possibility of using XFH to visualize the metal active site in sperm whale myoglobin (Mb), a monomeric oxygen storage heme protein. We demonstrate that the atomic images reconstructed from the hologram data of crystals of carbonmonoxy myoglobin (MbCO) are moderately consistent with the crystal structure, which is also determined in this study by X-ray crystallography in the near-atomic resolution, as well as simulation results. These results open up a new avenue for the application of XFH to local atomic and electronic structure imaging of metal-sites in biomolecules.


Holography , Myoglobin , Myoglobin/chemistry , X-Rays , Holography/methods , Crystallography, X-Ray , Heme/chemistry , Metals , Protein Conformation
6.
PLoS Biol ; 20(8): e3001714, 2022 08.
Article En | MEDLINE | ID: mdl-35913979

Galanin is a neuropeptide expressed in the central and peripheral nervous systems, where it regulates various processes including neuroendocrine release, cognition, and nerve regeneration. Three G-protein coupled receptors (GPCRs) for galanin have been discovered, which is the focus of efforts to treat diseases including Alzheimer's disease, anxiety, and addiction. To understand the basis of the ligand preferences of the receptors and to assist structure-based drug design, we used cryo-electron microscopy (cryo-EM) to solve the molecular structure of GALR2 bound to galanin and a cognate heterotrimeric G-protein, providing a molecular view of the neuropeptide binding site. Mutant proteins were assayed to help reveal the basis of ligand specificity, and structural comparison between the activated GALR2 and inactive hß2AR was used to relate galanin binding to the movements of transmembrane (TM) helices and the G-protein interface.


Galanin/chemistry , Heterotrimeric GTP-Binding Proteins , Receptor, Galanin, Type 2/chemistry , Cryoelectron Microscopy , Galanin/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Receptor, Galanin, Type 2/metabolism
7.
Biophys J ; 121(14): 2767-2780, 2022 07 19.
Article En | MEDLINE | ID: mdl-35689380

Hemoglobins M (Hbs M) are human hemoglobin variants in which either the α or ß subunit contains a ferric heme in the α2ß2 tetramer. Though the ferric subunit cannot bind O2, it regulates O2 affinity of its counterpart ferrous subunit. We have investigated resonance Raman spectra of two Hbs, M Iwate (α87His → tyrosine [Tyr]) and M Boston (α58His → Tyr), having tyrosine as a heme axial ligand at proximal and distal positions, respectively, that exhibit unassigned resonance Raman bands arising from ferric (not ferrous) hemes at 899 and 876 cm-1. Our quantum chemical calculations using density functional theory on Fe-porphyrin models with p-cresol and/or 4-methylimidazole showed that the unassigned bands correspond to the breathing-like modes of Fe3+-bound Tyr and are sensitive to the Fe-O-C(Tyr) angle. Based on the frequencies of the Raman bands, the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston were predicted to be 153.5° and 129.2°, respectively. Consistent with this prediction, x-ray crystallographic analysis showed that the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston in the T quaternary structure were 153.6° and 134.6°, respectively. It also showed a similar Fe-O bond length (1.96 and 1.97 Å) and different tilting angles.


Hemoglobin M , Crystallography , Density Functional Theory , Heme/chemistry , Hemoglobin M/chemistry , Hemoglobin M/metabolism , Humans , Spectrum Analysis, Raman , Tyrosine/chemistry , Vibration
8.
Nature ; 606(7916): 1027-1031, 2022 06.
Article En | MEDLINE | ID: mdl-35580630

Around 250 million people are infected with hepatitis B virus (HBV) worldwide1, and 15 million may also carry the satellite virus hepatitis D virus (HDV), which confers even greater risk of severe liver disease2. The HBV receptor has been identified as sodium taurocholate co-transporting polypeptide (NTCP), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large protein3. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria4,5, and these models are believed to resemble closely both NTCP and ASBT. Here we have used cryo-electron microscopy to solve the structure of NTCP bound to an antibody, clearly showing that the transporter has no equivalent of the first transmembrane helix found in other SLC10 proteins, and that the N terminus is exposed on the extracellular face. Comparison of our structure with those of related proteins indicates a common mechanism of bile acid transport, but the NTCP structure displays an additional pocket formed by residues that are known to interact with preS1, presenting new opportunities for structure-based drug design.


Bile Acids and Salts , Cryoelectron Microscopy , Hepatitis B virus , Organic Anion Transporters, Sodium-Dependent , Receptors, Virus , Symporters , Antibodies , Bile Acids and Salts/metabolism , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Humans , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/ultrastructure , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Receptors, Virus/ultrastructure , Symporters/chemistry , Symporters/metabolism , Symporters/ultrastructure
9.
Elife ; 112022 04 21.
Article En | MEDLINE | ID: mdl-35446253

Somatostatin is a peptide hormone that regulates endocrine systems by binding to G-protein-coupled somatostatin receptors. Somatostatin receptor 2 (SSTR2) is a human somatostatin receptor and is highly implicated in hormone disorders, cancers, and neurological diseases. Here, we report the high-resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) in complex with inhibitory G (Gi) proteins. Our structural and mutagenesis analyses show that seven transmembrane helices form a deep pocket for ligand binding and that SSTR2 recognizes the highly conserved Trp-Lys motif of SST-14 at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide a structural basis for the mechanism by which SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition mechanism of somatostatin receptors and a crucial resource to develop therapeutics targeting somatostatin receptors.


Receptors, Somatostatin , Somatostatin , Cryoelectron Microscopy , Humans , Ligands , Receptors, Somatostatin/agonists , Receptors, Somatostatin/metabolism , Somatostatin/metabolism
10.
Molecules ; 27(7)2022 Apr 02.
Article En | MEDLINE | ID: mdl-35408716

Phospholipase is an enzyme that hydrolyzes various phospholipid substrates at specific ester bonds and plays important roles such as membrane remodeling, as digestive enzymes, and the regulation of cellular mechanism. Phospholipase proteins are divided into following the four major groups according to the ester bonds they cleave off: phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD). Among the four phospholipase groups, PLA1 has been less studied than the other phospholipases. Here, we report the first molecular structures of plant PLA1s: AtDSEL and CaPLA1 derived from Arabidopsis thaliana and Capsicum annuum, respectively. AtDSEL and CaPLA1 are novel PLA1s in that they form homodimers since PLAs are generally in the form of a monomer. The dimerization domain at the C-terminal of the AtDSEL and CaPLA1 makes hydrophobic interactions between each monomer, respectively. The C-terminal domain is also present in PLA1s of other plants, but not in PLAs of mammals and fungi. An activity assay of AtDSEL toward various lipid substrates demonstrates that AtDSEL is specialized for the cleavage of sn-1 acyl chains. This report reveals a new domain that exists only in plant PLA1s and suggests that the domain is essential for homodimerization.


Arabidopsis , Phospholipases A1 , Plant Proteins , Arabidopsis/enzymology , Capsicum/enzymology , Dimerization , Esters , Phospholipases A1/chemistry , Plant Proteins/chemistry
11.
J Virol ; 95(24): e0093821, 2021 11 23.
Article En | MEDLINE | ID: mdl-34613794

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


Hepatitis B virus/physiology , Organic Anion Transporters, Sodium-Dependent/metabolism , Protein Multimerization , Receptors, Virus/metabolism , Symporters/metabolism , Virus Internalization/drug effects , Biological Transport , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Troglitazone/pharmacology , Virus Attachment/drug effects
12.
Biochem Biophys Res Commun ; 575: 90-95, 2021 10 20.
Article En | MEDLINE | ID: mdl-34461441

tRNATyr of Nanoarchaeum equitans has a remarkable feature with an extra guanosine residue at the 5'-terminus. However, the N. equitans tRNATyr mutant without extra guanosine at the 5'-end was tyrosylated by tyrosyl-tRNA synthase (TyrRS). We solved the crystal structure of N. equitans TyrRS at 2.80 Å resolution. By comparing the present solved structure with the complex structures TyrRS with tRNATyr of Thermus thermophilus and Methanocaldococcus jannaschii, an arginine substitution mutant of N. equitans TyrRS at Ile200 (I200R), which is the putative closest candidate to the 5'-phosphate of C1 of N. equitans tRNATyr, was prepared. The I200R mutant tyrosylated not only wild-type tRNATyr but also the tRNA without the G-1 residue. Further tyrosylation analysis revealed that the second base of the anticodon (U35), discriminator base (A73), and C1:G72 base pair are strong recognition sites.


Archaeal Proteins/chemistry , Crystallography, X-Ray/methods , Guanosine/chemistry , Nanoarchaeota/enzymology , RNA, Transfer, Tyr/chemistry , Tyrosine-tRNA Ligase/chemistry , Aminoacylation , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Models, Molecular , Protein Structural Elements , RNA, Transfer, Tyr/genetics , RNA, Transfer, Tyr/metabolism , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism
13.
Cell Rep ; 35(4): 109031, 2021 04 27.
Article En | MEDLINE | ID: mdl-33910001

Leucyl-tRNA synthetase 1 (LARS1) mediates activation of leucine-dependent mechanistic target of rapamycin complex 1 (mTORC1) as well as ligation of leucine to its cognate tRNAs, yet its mechanism of leucine sensing is poorly understood. Here we describe leucine binding-induced conformational changes of LARS1. We determine different crystal structures of LARS1 complexed with leucine, ATP, and a reaction intermediate analog, leucyl-sulfamoyl-adenylate (Leu-AMS), and find two distinct functional states of LARS1 for mTORC1 activation. Upon leucine binding to the synthetic site, H251 and R517 in the connective polypeptide and 50FPYPY54 in the catalytic domain change the hydrogen bond network, leading to conformational change in the C-terminal domain, correlating with RagD association. Leucine binding to LARS1 is increased in the presence of ATP, further augmenting leucine-dependent interaction of LARS1 and RagD. Thus, this work unveils the structural basis for leucine-dependent long-range communication between the catalytic and RagD-binding domains of LARS1 for mTORC1 activation.


Leucine-tRNA Ligase/metabolism , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Humans , Models, Molecular , Signal Transduction
14.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article En | MEDLINE | ID: mdl-33753488

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Chloride Channels/metabolism , Chlorides/metabolism , Rhodopsins, Microbial/metabolism , Cations, Monovalent/metabolism , Chloride Channels/isolation & purification , Chloride Channels/radiation effects , Chloride Channels/ultrastructure , Crystallography/methods , Electromagnetic Radiation , Lasers , Molecular Dynamics Simulation , Nocardioides , Protein Conformation, alpha-Helical/radiation effects , Protein Structure, Tertiary/radiation effects , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/radiation effects , Recombinant Proteins/ultrastructure , Retinaldehyde/metabolism , Retinaldehyde/radiation effects , Rhodopsins, Microbial/isolation & purification , Rhodopsins, Microbial/radiation effects , Rhodopsins, Microbial/ultrastructure , Water/metabolism
15.
Adv Exp Med Biol ; 1293: 129-139, 2021.
Article En | MEDLINE | ID: mdl-33398810

Photoactivated adenylyl cyclase (PAC) was first discovered to be a sensor for photoavoidance in the flagellate Euglena gracilis. PAC is a flavoprotein that catalyzes the production of cAMP upon illumination with blue light, which enables us to optogenetically manipulate intracellular cAMP levels in various biological systems. Recent progress in genome sequencing has revealed several related proteins in bacteria and ameboflagellates. Among them, the PACs from sulfur bacterium Beggiatoa sp. and cyanobacterium Oscillatoria acuminata have been well characterized, including their crystalline structure. Although there have not been many reported optogenetic applications of PACs so far, they have the potential to be used in various fields within bioscience.


Adenylyl Cyclases/metabolism , Adenylyl Cyclases/radiation effects , Light , Adenylyl Cyclases/genetics , Flavoproteins/genetics , Flavoproteins/metabolism , Optogenetics , Oscillatoria/genetics , Oscillatoria/metabolism
16.
Biomedicines ; 8(12)2020 Dec 14.
Article En | MEDLINE | ID: mdl-33327466

Nucleus accumbens-associated protein 1 (NAC1) is a nuclear protein that harbors an amino-terminal BTB domain and a carboxyl-terminal BEN domain. NAC1 appears to play significant and diverse functions in cancer and stem cell biology. Here we demonstrated that the BEN domain of NAC1 is a sequence-specific DNA-binding domain. We selected the palindromic 6 bp motif ACATGT as a target sequence by using a PCR-assisted random oligonucleotide selection approach. The interaction between NAC1 and target DNA was characterized by gel shift assays, pull-down assays, isothermal titration calorimetry (ITC), chromatin-immunoprecipitation assays, and NMR chemical shifts perturbation (CSP). The solution NMR structure revealed that the BEN domain of human NAC-1 is composed of five conserved α helices and two short ß sheets, with an additional hitherto unknown N-terminal α helix. In particular, ITC clarified that there are two sequential events in the titration of the BEN domain of NAC1 into the target DNA. The ITC results were further supported by CSP data and structure analyses. Furthermore, live cell photobleaching analyses revealed that the BEN domain of NAC1 alone was unable to interact with chromatin/other proteins in cells.

17.
Sci Rep ; 10(1): 22102, 2020 12 16.
Article En | MEDLINE | ID: mdl-33328520

SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac[Formula: see text](2-3)Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc) and its precursor, asialo-GM1 (Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the [Formula: see text]-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.


G(M1) Ganglioside/chemistry , Gangliosides/chemistry , Lectins/ultrastructure , Neoplasms/genetics , Animals , Bivalvia/chemistry , Carbohydrate Sequence , G(M1) Ganglioside/genetics , Gangliosides/genetics , Humans , Lectins/chemistry , Lectins/genetics , Neoplasms/pathology
18.
Nat Commun ; 11(1): 4744, 2020 09 21.
Article En | MEDLINE | ID: mdl-32958768

The accurate exclusion of introns by RNA splicing is critical for the production of mature mRNA. U2AF1 binds specifically to the 3´ splice site, which includes an essential AG dinucleotide. Even a single amino acid mutation of U2AF1 can cause serious disease such as certain cancers or myelodysplastic syndromes. Here, we describe the first crystal structures of wild-type and pathogenic mutant U2AF1 complexed with target RNA, revealing the mechanism of 3´ splice site selection, and how aberrant splicing results from clinically important mutations. Unexpected features of this mechanism may assist the future development of new treatments against diseases caused by splicing errors.


RNA Splice Sites/genetics , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Base Sequence , Crystallography, X-Ray , Exons/genetics , Humans , Mutation , Neoplasms/chemistry , Neoplasms/genetics , Nucleotides , RNA Recognition Motif , RNA Splicing/genetics , Splicing Factor U2AF/chemistry , Zinc Fingers
19.
J Mol Biol ; 432(19): 5273-5286, 2020 09 04.
Article En | MEDLINE | ID: mdl-32721401

Understanding the structure and functional mechanisms of cyanobacterial halorhodopsin has become increasingly important, given the report that Synechocystis halorhodopsin (SyHR), a homolog of the cyanobacterial halorhodopsin from Mastigocladopsis repens (MrHR), can take up divalent ions, such as SO42-, as well as chloride ions. Here, the crystal structure of MrHR, containing a unique "TSD" chloride ion conduction motif, was determined as a homotrimer at a resolution of 1.9 Å. The detailed structure of MrHR revealed a unique trimeric topology of the light-driven chloride pump, with peculiar coordination of two water molecules and hydrogen-mediated bonds near the TSD motif, as well as a short B-C loop. Structural and functional analyses of MrHR revealed key residues responsible for the anion selectivity of cyanobacterial halorhodopsin and the involvement of two chloride ion-binding sites in the ion conduction pathway. Alanine mutant of Asn63, Pro118, and Glu182 locating in the anion inlet induce multifunctional uptake of chloride, nitrate, and sulfate ions. Moreover, the structure of N63A/P118A provides information on how SyHR promotes divalent ion transport. Our findings significantly advance the structural understanding of microbial rhodopsins with different motifs. They also provide insight into the general structural framework underlying the molecular mechanisms of the cyanobacterial chloride pump containing SyHR, the only molecule known to transport both sulfate and chloride ions.


Anion Transport Proteins/chemistry , Bacterial Proteins/chemistry , Cyanobacteria/chemistry , Anion Transport Proteins/metabolism , Anions/metabolism , Bacterial Proteins/metabolism , Chlorides/metabolism , Crystallography, X-Ray , Cyanobacteria/metabolism , Halorhodopsins/chemistry , Halorhodopsins/metabolism , Ion Transport , Models, Molecular , Protein Conformation
20.
Sci Adv ; 6(6): eaay2042, 2020 02.
Article En | MEDLINE | ID: mdl-32083178

A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium Nonlabens marinus, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues-Cys105, Ser60, Gln224, and Phe90-were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to photostimulation appears to be substantially different from that seen in bacteriorhodopsin.


Bacterial Proteins/chemistry , Chloride Channels/chemistry , Light , Rhodopsin/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/chemistry , Ion Channel Gating , Models, Molecular , Protein Conformation , Rhodopsin/genetics , Rhodopsin/metabolism , Structure-Activity Relationship , Water/chemistry
...