Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Materials (Basel) ; 15(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36079253

The phase changes in alkali-activated slag samples when exposed to supercritical carbonation were evaluated. Ground granulated blast furnace slag was activated with five different activators. The NaOH, Na2SiO3, CaO, Na2SO4, and MgO were used as activators. C-S-H is identified as the main reaction product in all samples along with other minor reaction products. The X-ray diffractograms showed the complete decalcification of C-S-H and the formation of CaCO3 polymorphs such as calcite, aragonite, and vaterite. The thermal decomposition of carbonated samples indicates a broader range of CO2 decomposition. Formation of highly cross-linked aluminosilicate gel and a reduction in unreacted slag content upon carbonation is observed through 29Si and 27Al NMR spectroscopy. The observations indicate complete decalcification of C-S-H with formation of highly cross-linked aluminosilicates upon sCO2 carbonation. A 20-30% CO2 consumption per reacted slag under supercritical conditions is observed.

2.
Materials (Basel) ; 15(14)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35888524

The assessment of the extent of carbonation and related phase changes is important for the evaluation of the durability aspects of concrete. The phase assemblage of Portland cements with different clinker compositions is evaluated using thermodynamic calculations. Four different compositions of cements, as specified by ASTM cements types I to IV, are considered in this study. Calcite, zeolites, and gypsum were identified as carbonation products. CO2 content required for full carbonation had a direct relationship with the initial volume of phases. The CO2 required for portlandite determined the initiation of carbonation of C-S-H. A continual decrease in the pH of pore solution and a decrease in Ca/Si is observed with the carbonation of C-S-H. Type II cement exhibited rapid carbonation at relatively less CO2for full carbonation, while type III required more CO2 to carbonate to the same level as other types of cement. The modeling of carbonation of different Portland cements provided insights into the quantity of CO2 required to destabilize different hydrated products into respective carbonated phases.

3.
Materials (Basel) ; 14(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34885487

The use of alternative cementitious binders is necessary for producing sustainable concrete. Herein, we study the effect of using alternative cementitious binders in ultra-high-performance concrete (UPHC) by calculating the phase assemblages of UHPC in which Portland cement is replaced with calcium aluminate cement, calcium sulfoaluminate cement, metakaolin or blast furnace slag. The calculation result shows that replacing Portland cement with calcium aluminate cement or calcium sulfoaluminate cement reduces the volume of C-S-H but increases the overall solid volume due to the formation of other phases, such as strätlingite or ettringite. The modeling result predicts that using calcium aluminate cement or calcium sulfoaluminate cement may require more water than it would for plain UHPC, while a similar or lower amount of water is needed for chemical reactions when using blast furnace slag or metakaolin.

4.
Polymers (Basel) ; 13(15)2021 Jul 31.
Article En | MEDLINE | ID: mdl-34372153

The management of plastic waste is a massive challenge and the recycling of plastics for newer applications is a potential solution. This study investigates the feasibility of using polyethylene terephthalate (PET) powder in cementitious composites. The changes in the strength and microstructure of Portland cement incorporating PET powder with different replacement ratios were systematically analyzed through the measurements of compressive strength, isothermal calorimetry, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. In addition, the possible chemical changes of cement paste samples were studied upon exposure to different conditions, including deionized water, seawater, and simulated pore solution. Based on the test results and analysis, no apparent chemical changes were observed in the cement paste samples, regardless of the exposure conditions. In contrast, the PET powder incorporated into concrete exhibited remarkable changes, which may have occurred during the mixing process. The results also suggested that the maximum replacement ratio of PET powder should be less than 10% of the binder (by mass) to minimize its influence on cement hydration, due to the interaction between water and PET. The PET-containing samples showed the presence of calcium aluminate hydrates which were absent in the neat paste sample.

5.
Materials (Basel) ; 14(13)2021 Jun 27.
Article En | MEDLINE | ID: mdl-34199086

This study presents an investigation of the effects of the precursor, alkalinity and temperature on the rheology and structural buildup of alkali activated materials. Here, 100% fly ash, 100% slag and blended mixes of fly ash and slag were activated by 4 M, 6 M, 8 M or 10 M (only for sodium hydroxide) solutions at 25 °C, 35 °C, 45 °C and 55 °C. The rheological properties were investigated to obtain the flow curves, viscosity, storage modulus, and loss factor of these materials. The results showed that for the presence of slag, a higher molarity of the alkali activating solution and a high temperature all caused greater interparticle force, leading to an increase in the shear stress and viscosity of the alkali activated materials. It was also observed that slag had the greatest effect on the increase in the storage modulus of the blended mixes. Furthermore, the higher alkalinity and temperature levels were instrumental in initiating the dissolution of fly ash and improving its rate of structural buildup. Moreover, the interdependence of various factors showed that the type of precursor, as well as the concentration of alkali activating solution, were the primary influencing factors on the polymerization process, as well as the rheological measurements of alkali-activated materials.

6.
Materials (Basel) ; 14(5)2021 Mar 04.
Article En | MEDLINE | ID: mdl-33806644

The present study investigated the structural evolution of Portland cement (PC) incorporating supplementary cementitious materials (SCMs) exposed to seawater. The samples were made with replacing Portland cement with 10 mass-% silica fume, metakaolin or glass powder. The reaction degree of SCMs estimated by the portlandite consumption shows that metakaolin has the highest reaction degree, thus metakaolin-blended PC exhibits the highest strength. The control exposed to seawater exhibited 14.82% and 12.14% higher compressive strengths compared to those cured in tap water at 7 and 28 days. The samples incorporating metakaolin showed the highest compressive strength of 76.60 MPa at 90 days tap water curing and this was 17% higher than that of the control. Exposure to seawater is found to retard the rate of hydration in all SCM-incorporating systems, while the strength development of the neat PC system is enhanced. The main reaction product that forms during exposure to seawater is Cl-AFm and brucite, while it is predicted by the thermodynamic modelling that a significant amount of M-S-H, calcite and hydrotalcite is to form at an extended period of exposure time.

7.
Materials (Basel) ; 14(4)2021 Feb 11.
Article En | MEDLINE | ID: mdl-33670355

Cement-based materials play an irreplaceable role in building and sustaining our society by meeting the performance demand imposed on structures and sustainability. Cement-based materials are no longer limited to derivatives of Portland cement, and appreciate a wider range of binders that come from various origins. It is therefore of utmost importance for understanding and expanding the relevant knowledge on their microstructure and likely durability performance. This Special Issue "Microstructures and Durability of Cement-Based Materials" presents recent studies reporting microstructural and durability investigation revealing the characteristics of cement-based materials.

8.
Materials (Basel) ; 13(20)2020 Oct 19.
Article En | MEDLINE | ID: mdl-33086553

The feasibility of carbonation curing of ternary blend Portland cement-metakaolin-limestone was investigated. Portland cement was substituted by the combination of metakaolin and limestone at levels of 15%, 30%, and 45% by the mass. The ternary blends were cured with four different combinations of ambient and carbonation curing. The mechanical property, CO2 uptake, and mineralogical variations of the ternary blend pastes were investigated by means of compressive strength test, thermogravimetric analysis, and X-ray diffractometry. In addition, volume of permeable voids and sorptivity of the ternary blends were also presented to provide a fundamental idea of the pore characteristics of the blends. The test results showed that the increasing amount of metakaolin and limestone enhanced the CO2 uptake, reaching 20.7% for the sample with a 45% cement replacement level at 27 d of carbonation. Meanwhile, the compressive strength of the samples was reduced up to 65% upon excessive incorporation of metakaolin and limestone. The samples with a replacement level of 15% exhibited a comparable strength and volume of permeable voids to those of the sample without substitution, proving that the ternary blend Portland cement-metakaolin-limestone can be a viable option toward the development of eco-friendly binders.

10.
J Hazard Mater ; 387: 121825, 2020 04 05.
Article En | MEDLINE | ID: mdl-31892426

The structural evolution of a binder gel in alkali-activated cements exposed to accelerated leaching conditions is investigated for the first time. Samples incorporating fly ash and/or slag were synthesized and were exposed to electrically accelerated leaching by applying a current density of 5 A/m2. The leaching behavior of the samples greatly depended on the binder gel formed in the samples. The N-A-S-H type gel abundant in fly ash-rich samples showed some extent of dissolution upon accelerated leaching, while slag-rich samples underwent hydration of the anhydrous slag after leaching. The obtained results are discussed in view of the degradation of the binder gel induced by accelerated leaching, and their potential performance under repository conditions where groundwater-induced leaching is the main durability concern.

11.
Materials (Basel) ; 12(21)2019 Oct 26.
Article En | MEDLINE | ID: mdl-31717726

The solidification and stabilization of calcium carbide residue (CCR) using granulated blast furnace slag was investigated in this study. CCR binding in hydrated slag was explored by X-ray diffraction, 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and thermodynamic calculations. Mercury intrusion porosimetry and and compressive strength tests assessed the microstructure and mechanical properties of the mixtures of slag and CCR. C-A-S-H gel, ettringite, hemicarbonate, and hydrotalcite were identified as the main phases in the mixture of slag and CCR. The maximum CCR uptake by slag and the highest volume of precipitated solid phases were reached when CCR loading in slag is 7.5% by mass of slag, according to the thermodynamic prediction. This feature is also experimentally observed in the microstructure, which showed an increase in the pore volume at higher CCR loading.

12.
Materials (Basel) ; 9(5)2016 Apr 26.
Article En | MEDLINE | ID: mdl-28773434

The present study investigated aluminosilicate gel in alkali-activated fly ash exposed to a CO2-rich environment by means of NMR spectroscopy. The alkali-activated fly ash was exposed to an atmospheric CO2 concentration of 10% after curing at 80 °C initially for 24 h. Under high concentrations of CO2, highly reactive components Na and Al, which completely reacted within the first few hours, were unaffected by carbonation, while Si, with relatively slower reactivity, behaved differently. Despite a lower degree of the reaction in the carbonated sample, the monomeric silicates rapidly became of higher polymerization, meaning that exposure to high concentrations of CO2 caused Si to form a binding gel phase. Consequently, the carbonated sample possessed a higher amount of binding gel. The obtained results may be useful to understand the fundamental chemistry and behavior of aluminosilicate gel under high concentrations of CO2.

...