Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7935, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261460

RESUMEN

Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , ARN/genética , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo
2.
Nucleic Acids Res ; 52(3): 1207-1225, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117983

RESUMEN

Abundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types. In most cell types, the rNMPs are preferentially embedded on the light strand of hmtDNA with a strong bias towards rCMPs; while in the liver-tissue cells, the rNMPs are predominately found on the heavy strand. We uncover common rNMP hotspots and conserved rNMP-enriched zones across the entire hmtDNA, including in the control region, which links the rNMP presence to the frequent hmtDNA replication-failure events. We show a strong correlation between coding-sequence size and rNMP-embedment frequency per nucleotide on the non-template, light strand in all cell types, supporting the presence of transient RNA-DNA hybrids preceding light-strand replication. Moreover, we detect rNMP-embedment patterns that are only partly conserved across the different cell types and are distinct from those found in yeast mtDNA. The study opens new research directions to understand the biology of hmtDNA and genomic rNMPs.


Asunto(s)
Replicación del ADN , Genoma Mitocondrial , Ribonucleósidos , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ribonucleósidos/metabolismo , Ribonucleótidos/genética , Ribonucleótidos/metabolismo
3.
NAR Cancer ; 4(1): zcac004, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35252866

RESUMEN

Mutations in the exonuclease domain of POLE are associated with tumors harboring very high mutation burdens. The mechanisms linking this significant mutation accumulation and tumor development remain poorly understood. Pole +/P286R;Trp53 +/- mice showed accelerated cancer mortality compared to Pole +/P286R;Trp53 +/+ mice. Cells from Pole +/P286R mice showed increased p53 activation, and subsequent loss of p53 permitted rapid growth, implicating canonical p53 loss of heterozygosity in POLE mutant tumor growth. However, p53 status had no effect on tumor mutation burden or single base substitution signatures in POLE mutant tumors from mice or humans. Pten has important roles in maintaining genome stability. We find that PTEN mutations are highly enriched in human POLE mutant tumors, including many in POLE signature contexts. One such signature mutation, PTEN-F341V, was previously shown in a mouse model to specifically decrease nuclear Pten and lead to increased DNA damage. We found tumors in Pole +/P286R mice that spontaneously acquired PtenF341V mutations and were associated with significantly reduced nuclear Pten and elevated DNA damage. Re-analysis of human TCGA (The Cancer Genome Atlas) data showed that all PTEN-F341V mutations occurred in tumors with mutations in POLE. Taken together with recent published work, our results support the idea that development of POLE mutant tumors may involve disabling surveillance of nuclear DNA damage in addition to POLE-mediated hypermutagenesis.

4.
Cancer Res ; 80(24): 5606-5618, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938641

RESUMEN

POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype-phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. SIGNIFICANCE: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy.See related commentary by Wisdom and Kirsch p. 5459.


Asunto(s)
ADN Polimerasa II , Neoplasias , Animales , ADN Polimerasa II/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Mutación , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética
5.
Mol Cell ; 78(6): 1166-1177.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32497495

RESUMEN

Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Alelos , Línea Celular Tumoral , Reparación de la Incompatibilidad de ADN/fisiología , Humanos , Mutagénesis/genética , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo
6.
DNA Repair (Amst) ; 76: 50-59, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30818169

RESUMEN

DNA polymerases are uniquely poised to contribute to the elevated mutation burdens seen in many human tumors. These mutations can arise through a number of different polymerase-dependent mechanisms, including intrinsic errors made using template DNA and precursor dNTPs free from chemical modifications, misinsertion events opposite chemically damaged template DNA or insertion events using modified nucleotides. While specific DNA repair polymerases have been known to contribute to tumorigenesis, the role of replication polymerases in mutagenesis in human disease has come into sharp focus over the last decade. This review describes how mutations in these replication DNA polymerases help to drive mutagenesis and tumor development, with particular attention to DNA polymerase epsilon. Recent studies using cancer genome sequencing, mutational signature analyses, yeast and mouse models, and the influence of mismatch repair on tumors with DNA polymerase mutations are discussed.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis , Neoplasias/enzimología , Neoplasias/genética , Animales , Carcinogénesis/genética , Reparación del ADN , Inestabilidad Genómica , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA