Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Rep ; 14(1): 7134, 2024 03 26.
Article En | MEDLINE | ID: mdl-38532018

We aimed to investigate the deliverability of dynamic conformal arc therapy (DCAT) by gantry wobble owing to the intrinsic inter-segment break of the Elekta linear accelerator (LINAC) and its adverse influence on the dose to the patient. The deliverability of DCAT was evaluated according to the plan parameters, which affect the gantry rotation speed and resultant positional inaccuracies; the deliverability according to the number of control points and dose rates was investigated by using treatment machine log files and dosimetry devices, respectively. A non-negligible degradation in DCAT deliverability due to gantry wobble was observed in both the treatment machine log files and dosimetry devices. The resulting dose-delivery error occurred below a certain number of control points or above a certain dose rate. Dose simulations in the patient domain showed a similar impact on deteriorated deliverability. For targets located primarily in the isocenter, the dose differences were negligible, whereas for organs at risk located mainly off-isocenter, the dose differences were significant up to - 8.77%. To ensure safe and accurate radiotherapy, optimal plan parameters should be selected, and gantry angle-specific validations should be conducted before treatment.


Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods
2.
Med Phys ; 51(4): 3053-3066, 2024 Apr.
Article En | MEDLINE | ID: mdl-38043086

BACKGROUND: Online dose calculations before the delivery of radiation treatments have applications in dose delivery verification, online adaptation of treatment plans, and simulation-free treatment planning. While dose calculations by directly utilizing CBCT images are desired, dosimetric accuracy can be compromised due to relatively lower HU accuracy in CBCT images. PURPOSE: In this work, we propose a novel CBCT imaging pipeline to enhance the accuracy of CBCT-based dose calculations in the pelvis region. Our approach aims to improve the HU accuracy in CBCT images, thereby improving the overall accuracy of CBCT-based dose calculations prior to radiation treatment delivery. METHODS: An in-house developed quantitative CBCT pipeline was implemented to address the CBCT raw data contamination problem. The pipeline combines algorithmic data correction strategies and 2D antiscatter grid-based scatter rejection to achieve high CT number accuracy. To evaluate the effect of the quantitative CBCT pipeline on CBCT-based dose calculations, phantoms mimicking pelvis anatomy were scanned using a linac-mounted CBCT system, and a gold standard multidetector CT used for treatment planning (pCT). A total of 20 intensity-modulated treatment plans were generated for five targets, using 6 and 10 MV flattening filter-free beams, and utilizing small and large pelvis phantom images. For each treatment plan, four different dose calculations were performed using pCT images and three CBCT imaging configurations: quantitative CBCT, clinical CBCT protocol, and a high-performance 1D antiscatter grid (1D ASG). Subsequently, dosimetric accuracy was evaluated for both targets and organs at risk as a function of patient size, target location, beam energy, and CBCT imaging configuration. RESULTS: When compared to the gold-standard pCT, dosimetric errors in quantitative CBCT-based dose calculations were not significant across all phantom sizes, beam energies, and treatment sites. The largest error observed was 0.6% among all dose volume histogram metrics and evaluated dose calculations. In contrast, dosimetric errors reached up to 7% and 97% in clinical CBCT and high-performance ASG CBCT-based treatment plans, respectively. The largest dosimetric errors were observed in bony targets in the large phantom treated with 6 MV beams. The trends of dosimetric errors in organs at risk were similar to those observed in the targets. CONCLUSIONS: The proposed quantitative CBCT pipeline has the potential to provide comparable dose calculation accuracy to the gold-standard planning CT in photon radiation therapy for the abdomen and pelvis. These robust dose calculations could eliminate the need for density overrides in CBCT images and enable direct utilization of CBCT images for dose delivery monitoring or online treatment plan adaptations before the delivery of radiation treatments.


Spiral Cone-Beam Computed Tomography , Humans , Cone-Beam Computed Tomography/methods , Pelvis/diagnostic imaging , Radiotherapy Dosage , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Abdomen
3.
ArXiv ; 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37873015

Online dose calculations before radiation treatment have applications in dose delivery verification, plan adaptation, and treatment planning. We propose a novel CBCT imaging pipeline to enhance accuracy. Our approach aims to improve HU accuracy in CBCT images for more precise dose calculations. A quantitative CBCT pipeline was implemented, combining data correction strategies and scatter rejection, achieving high CT number accuracy. We evaluated the pipeline's effect using pelvis anatomy phantoms and found that dosimetric errors in quantitative CBCT-based dose calculations were minimal. In contrast, clinical CBCT and high-performance ASG CBCT-based plans showed significant errors. The proposed quantitative CBCT pipeline offers comparable dose calculation accuracy to the gold-standard planning CT, eliminating the need for density overrides and enabling precise dose delivery monitoring or online plan adaptations in radiation therapy.

4.
Med Phys ; 48(4): 1846-1858, 2021 Apr.
Article En | MEDLINE | ID: mdl-33554377

PURPOSE: We have been investigating two-dimensional (2D) antiscatter grids (2D ASGs) to reduce scatter fluence and improve image quality in cone beam computed tomography (CBCT). In this work, two different aspects of 2D ASGs, their scatter rejection and correction capability, were investigated in CBCT experiments. To correct residual scatter transmitted through the 2D ASG, it was used as a scatter measurement device with a novel method: grid-based scatter sampling. METHODS: Three focused 2D ASG prototypes with grid ratios of 8, 12, and 16 were developed for linac-mounted offset detector CBCT geometry. In the first phase, 2D ASGs were used as a scatter rejection device, and the effect of grid ratio on CT number accuracy and contrast-to-noise ratio (CNR) evaluated in CBCT images. In the second phase, a grid-based scatter sampling method which exploits the signal modulation characteristics of the 2D ASG's septal shadows to measure and correct residual scatter transmitted through the grid was implemented. To evaluate CT number accuracy, the percent change in CT numbers was measured by changing the phantom from head to pelvis size and configuration. RESULTS: When 2D ASG was used as a scatter rejection device, CT number accuracy increased and the CT number variation due to change in phantom dimensions was reduced from 23% to 2-6%. A grid ratio of 16 yielded the lowest CT number variation. All three 2D ASGs yielded improvement in CNR, up to a factor of two in pelvis-sized phantoms. When 2D ASG prototypes were used for both scatter rejection and correction, CT number variations were reduced further, to 1.3-2.6%. In comparisons with a clinical CBCT system and a high-performance radiographic ASG, 2D ASG provided higher CT number accuracy under the same imaging conditions. CONCLUSIONS: When 2D ASG is used solely as a scatter rejection device, substantial improvement in CT number accuracy can be achieved by increasing the grid ratio. Two-dimensional ASGs also provided significant CNR improvement even at lower grid ratios. Two-dimensional ASGs used in conjunction with the grid-based scatter sampling method provided further improvement in CT number accuracy, irrespective of the grid ratio, while preserving 2D ASGs' capacity to improve CNR. The combined effect of scatter rejection and residual scatter correction by 2D ASG may accelerate implementation of new techniques in CBCT that require high quantitative accuracy, such as radiotherapy dose calculation and dual energy CBCT.


Cone-Beam Computed Tomography , Particle Accelerators , Head , Phantoms, Imaging , Scattering, Radiation
5.
Med Phys ; 48(3): 1211-1225, 2021 Mar.
Article En | MEDLINE | ID: mdl-33378551

PURPOSE: Scattered radiation is a major cause of image quality degradation in flat panel detector-based cone beam CT (CBCT). While recently introduced 2D antiscatter grids reject the majority of scatter fluence, the small percentage of scatter fluence still transmitted to the detector remains a major challenge for implementation of quantitative imaging techniques such as dual energy imaging in CBCT. Additionally, this residual scatter is also a major source of grid-induced artifacts, which impedes implementation of 2D grids in CBCT. We therefore present a new method to achieve both robust scatter rejection and residual scatter correction using a 2D antiscatter grid; in doing so, we expand the role of 2D grids from mere scatter rejection devices to scatter measurement devices. METHOD: In our method, the radiopaque septa of the 2D grid emulate a micro array of beam-stops placed on the detector which introduce spatially periodic septal shadows. By selecting sufficiently thin grid septa, the primary intensity can be reduced while preserving the uniformity of scatter intensity. This enables us to correlate the modulated pixel signal intensity in septal shadows with local scatter intensity. Our method then exploits this correlation to measure and remove residual scatter intensity from projections. No assumptions are made about the object being imaged. We refer to this as Grid-based Scatter Sampling (GSS). In this work, we evaluate the principle of signal modulation with grid septa, the accuracy of scatter estimates, and the effect of the GSS method on image quality using simulations and measurements. We also implement the GSS method experimentally using a 2D grid prototype. RESULTS: Our results demonstrate that the GSS method increased CT number accuracy and reduced image artifacts associated with scatter. With 2D grid and residual scatter correction, HU nonuniformity was reduced from 65 HU to 30 HU in pelvis sized phantoms, and HU variations due to change in phantom size were reduced from 59 HU to 20 HU, when compared to use of only a 2D grid. With residual scatter correction via GSS method, grid-induced ring artifacts were suppressed, leading to a 41% reduction in noise. The shape of the modulation transfer function (MTF) was preserved before and after suppression of ring artifacts. CONCLUSIONS: Our grid-based scatter sampling method enables utilization of a 2D grid as a scatter measurement and correction device. This method significantly improves quantitative accuracy in CBCT, further reducing the image quality gap between CBCT and multi-detector CT. By correcting residual scatter with the proposed method, grid-induced line artifacts in projections and associated ring artifacts in CBCT images were also suppressed with no compromise of spatial resolution.


Cone-Beam Computed Tomography , Pelvis , Algorithms , Artifacts , Phantoms, Imaging , Scattering, Radiation
6.
Article En | MEDLINE | ID: mdl-32313356

While two-dimensional antiscatter grids (2D grid) reduce scatter intensity substantially in Cone Beam Computed Tomography (CBCT), a small fraction of scattered radiation is transmitted through the 2D grid to the detector. Residual scatter limits the accuracy of CT numbers and interferes with the correction of grid's septal shadows, or footprint, in projections. If grid's septal shadows are not adequately suppressed in projections, it will lead to ring artifacts in CBCT images. In this work, we present a new method to correct residual scatter transmitted through the grid by employing the 2D grid itself as a residual scatter measurement device. Our method, referred as grid-based scatter sampling (GSS), exploits the spatial modulation of primary x-ray fluence by 2D grid's septal shadows. The shape of the signal modulation pattern varies as a function of residual scatter intensity registered by detector pixels. Such a variation in signal pattern was employed to measure residual scatter intensity in each projection, and subsequently, residual scatter was subtracted from each projection. To validate the GSS method, CBCT imaging experiments were conducted using a 2D antiscatter grid prototype in a linac mounted CBCT system. The effect of GSS method on the ring artifact reduction was quantified by measuring noise in CBCT images. In addition, the nonuniformity of Hounsfield Units (HU) and HU accuracy was measured in both head and pelvis-sized phantoms. In qualitative evaluations, GSS method successfully reduced ring artifacts caused by 2D grid's footprint. Image noise reduced by 23% due to reduction of ring artifacts. HU nonuniformity in water-equivalent sections was reduced from 20 HU to 10 HU, and streak artifacts between high density inserts were reduced. The phantom size dependent variations in HU was also reduced after application of GSS method. Without GSS method, HU of density inserts reduced by 9% on the average when phantom size was increased from head to pelvis. With GSS method, HU values reduced only by 5% under the same conditions. In summary, GSS method complements the 2D grid's scatter suppression performance, by correcting the scatter transmitted through the grid. This approach does not require additional scatter-measurement hardware, such as beam-stop arrays, since the grid itself is employed as the scatter measurement device. By suppressing residual scatter in projections, our proposed method successfully reduced artifacts caused by 2D grid's footprint, and further improved CT number accuracy.

7.
J Korean Acad Nurs ; 45(4): 523-32, 2015 Aug.
Article Ko | MEDLINE | ID: mdl-26364527

PURPOSE: The usability, user satisfaction, and impact of electronic nursing record (ENR) systems were investigated. METHODS: This mixed-method research was performed as a time-motion (TM) study and a survey which were carried out at six hospitals between August and November 2013. The TM study involved 108 nurses from medical, surgical, and intensive care units at each hospital, plus an additional 48 nurses who served as nonparticipating observers. In the survey, 1879 volunteer nurses completed the Impact of ENR Systems Scale, the System Usability Scale, and a global satisfaction scale. Qualitative and quantitative analyses were performed. RESULTS: The mean scores for the ENR impact, system usability, and satisfaction were 4.28 (out of 6), 58.62 (out of 100), and 74.31 (out of 100), respectively, and they differed significantly between hospitals (F=43.43, p<.001, F=53.08 and p<.001, and F=29.13 and p<.001, respectively). A workflow fragmentation assessment revealed different patterns of ENR system use among the included hospitals. Three user characteristics-educational background, practice period, and experience of using paper records-significantly affected the system usability and satisfaction scores. CONCLUSION: The system quality varied widely among the ENR systems. The generally low-to-moderate levels of system usability and user satisfaction suggest many opportunities for improvement.


Nursing Records , Nursing Staff, Hospital/psychology , User-Computer Interface , Adult , Female , Humans , Male , Personal Satisfaction , Surveys and Questionnaires
...