Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 136
1.
Acta Neurochir (Wien) ; 166(1): 238, 2024 May 30.
Article En | MEDLINE | ID: mdl-38814356

Trigeminal neuralgia causes excruciating pain in patients. Microvascular decompression is indicated for drug-resistant s trigeminal neuralgia. Unlike facial spasms, any part of the nerve can be the culprit, not only the root entry zone. Intraoperative monitoring does not yet exist for trigeminal neuralgia. We successfully used intermittent stimulation of the superior cerebellar artery during surgery and confirmed the disappearance of the trigeminal nerve motor branch reaction after the release of the compression. Intermittent direct stimulation of the culprit blood vessel using the motor branch of the trigeminal nerve may assist in intraoperative monitoring of decompression during trigeminal nerve vascular decompression surgery.


Microvascular Decompression Surgery , Trigeminal Neuralgia , Trigeminal Neuralgia/surgery , Humans , Microvascular Decompression Surgery/methods , Trigeminal Nerve/surgery , Monitoring, Intraoperative/methods , Male , Female , Aged , Middle Aged
2.
ACS Nano ; 18(20): 12737-12748, 2024 May 21.
Article En | MEDLINE | ID: mdl-38717305

Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.


Membrane Fusion , Phosphatidylinositol 4,5-Diphosphate , Static Electricity , Water , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Water/chemistry , Liposomes/chemistry , SNARE Proteins/metabolism , SNARE Proteins/chemistry , Catalysis
3.
Front Med (Lausanne) ; 11: 1296418, 2024.
Article En | MEDLINE | ID: mdl-38455476

Background: The screening tools for sarcopenia are measuring calf circumference, SARC-F or SPPB. However, not all of these tools have high sensitivity, specificity, and low margins of error. This research investigates potential of 3D anthropometry of the lower extremities on screening of sarcopenia. Methods: From October 2022 to February 2023, we retrospectively analyzed results of 3D body scanner and bio-impedance analysis for patients aged 45 to 85 at risk of sarcopenia. The 3D scanner measured the surface and volume values of both thighs and calves. When skeletal muscle index (SMI) is less than 5.7, patients were classified to Low SMI group, indicative of sarcopenia. Results: A total six out of 62 patients were classified to Low SMI group, showing significantly lower values of right, left, mean calf volumes and mean calf surface than the other patients (right calf volume 2.62 L vs. 3.34 L, p = 0.033; left calf volume 2.62 L vs. 3.25 L, p = 0.044; mean calf volume 2.62 L vs. 3.29 L, p = 0.029; mean calf surface 0.12 m2 vs. 0.13 m2, p = 0.049). There was no statistical difference in thigh volume and surface. Through AUC-ROC analysis, mean calf volume was the most significant cut-off value (right calf volume 2.80 L, AUC = 0.768; left calf volume 2.75 L, AUC = 0.753; mean calf volume 3.06 L, AUC = 0.774; mean calf surface 0.12 m2, AUC = 0.747). Conclusion: The calf volume and surface values have significant relationship with low SMI, and the mean calf volume was the most significant cut-off screening value for Low SMI. The 3D scanner demonstrated its value as a new means for screening sarcopenia.

4.
Vaccines (Basel) ; 12(2)2024 Feb 13.
Article En | MEDLINE | ID: mdl-38400173

All pigs in the Republic of Korea are given the foot-and-mouth disease virus (FMDV) vaccine intramuscularly (IM) as part of the country's vaccination policy. However, the IM administration of the FMDV vaccine to pig results in residual vaccine components in the muscle and undesirable changes in muscle and soft tissues, causing economic losses in swine production. In this study, we evaluated whether intradermal (ID) vaccination could be proposed as an alternative to IM administration. ID vaccination (0.2 mL on each side of the neck muscle) and IM vaccination (2 mL on each side of the neck muscle) were performed twice, separated by 14 days, using a commercial FMD vaccine in specific-pathogen-free pigs. We observed growth performance, gross and microscopic lesions at the inoculation site, FMDV-specific antibodies, and neutralizing antibodies for 35 days after vaccination. Side effects on the skin grossly appeared following ID administration, but most were reduced within two weeks. All ID-vaccinated pigs showed inflammatory lesions limited to the dermis, but IM-vaccinated pigs had abnormal undesirable changes and pus in the muscle. ID-vaccinated pigs performed comparably to IM-vaccinated pigs in terms of growth, FMD virus-specific antibodies, protection capability against FMDV, and T-cell induction. This study demonstrated that the ID inoculation of the inactivated FMD vaccine induced immune responses comparable to an IM injection at 1/10 of the inoculation dose and that the inoculation lesion was limited to the dermis, effectively protecting against the formation of abnormal undesirable changes in muscle and soft tissues.

5.
J Neurosurg Case Lessons ; 7(4)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38252934

BACKGROUND: Intracranial chondroma is an extremely rare type of tumor composed of mature hyaline cartilaginous tissues. No previous cases of skull base periosteal chondroma have been presented. OBSERVATIONS: A 31-year-old male had progressive memory loss and diminished motivation for the previous 1.5 years. Magnetic resonance imaging revealed a giant tumor with partial calcification arising from the upper clivus and extending to the prepontine cistern. Compression of the brainstem and hypothalamus was significant. Surgery was performed and intentionally limited to an intracapsular resection with endoscopic endonasal surgery (EES), and the brainstem and hypothalamus were successfully decompressed. Pathological examination findings showed a composition of hyaline cartilage with chondrocyte clusters. Genetic testing with next-generation sequencing indicated alternations in IDH1 R132C, KDR Q472H, IDH2 I142L, and TP53 P72R. On the basis of these findings, a diagnosis of periosteal chondroma was made. Postoperatively, complete relief from all symptoms was noted, and MRI one year later showed no evidence of tumor regrowth. LESSONS: This is the first known report of skull base periosteal chondroma. Genetic testing was useful for confirming the diagnosis, and EES was effective for treatment. Should such a tumor show adhesion to an important structure, an intracapsular excision can be beneficial for avoiding complications.

6.
Plast Reconstr Surg ; 153(4): 690e-700e, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37141448

BACKGROUND: Although previous clinical studies have reported that cell-assisted lipotransfer increases the fat survival rate in facial fat transplants, most were case studies without quantitative evaluation. A multicenter randomized controlled study was performed to evaluate the safety and efficacy of the stromal vascular fraction (SVF) in facial fat grafts. METHODS: Twenty-three participants were enrolled for autologous fat transfer in the face, and assigned randomly to the experimental ( n = 11) or control ( n = 12) group. Fat survival was assessed using magnetic resonance imaging at 6 and 24 weeks postoperatively. Subjective evaluations were performed by the patients and surgeons. To address safety concerns, results of an SVF culture and the postoperative complications were recorded. RESULTS: The overall fat survival rate was significantly higher in the experimental group than in the control group (6 weeks, 74.5% ± 9.99% versus 66.55% ± 13.77%, P < 0.025; 24 weeks, 71.27% ± 10.43% versus 61.98% ± 13.46%, P < 0.012). Specifically, graft survival in the forehead was 12.82% higher in the experimental group when compared with that in the control group at 6 weeks ( P < 0.023). Furthermore, graft survival in the forehead ( P < 0.021) and cheeks ( P < 0.035) was superior in the experimental group at 24 weeks. At 24 weeks, the aesthetic scores given by the surgeons were higher in the experimental group than in the control group ( P < 0.03); however, no significant intergroup differences were noted in the patient-evaluated scores. Neither bacterial growth from SVF cultures nor postoperative complications were noted. CONCLUSION: SVF enrichment for autologous fat grafting can be a safe and effective technique for increasing the fat retention rate. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.


Adipose Tissue , Graft Survival , Humans , Adipose Tissue/transplantation , Stromal Vascular Fraction , Transplantation, Autologous , Postoperative Complications , Stromal Cells/transplantation
7.
Mol Neurobiol ; 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37991699

Thyroid hormone (T3) plays a vital role in brain development and its dysregulation can impact behavior, nervous system function, and cognitive development. Large case-cohort studies have associated abnormal maternal T3 during early pregnancy to epilepsy, autism, and attention deficit hyperactivity disorder (ADHD) in children. Recent experimental findings have also shown T3's influence on the fate of neural precursor cells and raise the question of its convergence with embryonic neural progenitors. Our objective was to investigate how T3 treatment affects neuronal development and functionality at the cellular level. In vitro experiments using neural precursor cells (NPCs) measured cell growth and numbers after exposure to varying T3 concentrations. Time points included week 0 (W0) representing NPCs treated with 100 nM T3 for 5 days, and differentiated cortical neurons assessed at weeks 3 (W3), 6 (W6), and 8 (W8). Techniques such as single-cell calcium imaging and whole-cell patch clamp were utilized to evaluate neuronal activity and function. IHC staining detected mature neuron markers, and RNA sequencing enabled molecular profiling. W6 and W8 neurons exhibited higher action potential frequencies, with W6 showing increased peak amplitudes and shortened inter-spike intervals by 50%, indicating enhanced activity. Transcriptomic analysis revealed that W6 T3-treated neurons formed a distinct cluster, suggesting accelerated maturation. Comparison with the whole transcriptome further unveiled a correlation between W6 neurons treated with T3 and neuronal regulatory elements associated with autism and ADHD. These findings provide insights into T3's impact on neuronal development and potential mechanisms of T3 dysregulation and neurodevelopmental disorders.

8.
Mol Neurobiol ; 60(12): 7297-7308, 2023 Dec.
Article En | MEDLINE | ID: mdl-37552395

Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder linked to numerous rare, inherited, and arising de novo genetic variants. ASD often co-occurs with attention-deficit hyperactivity disorder and epilepsy, which are associated with hyperexcitability of neurons. However, the physiological and molecular mechanisms underlying hyperexcitability in ASD remain poorly understood. Transient receptor potential canonical-6 (TRPC6) is a Ca2+-permeable cation channel that regulates store-operated calcium entry (SOCE) and is a candidate risk gene for ASD. Using human pluripotent stem cell (hPSC)-derived cortical neurons, single-cell calcium imaging, and electrophysiological recording, we show that TRPC6 knockout (KO) reduces SOCE signaling and leads to hyperexcitability of neurons by increasing action potential frequency and network burst frequency. Our data provide evidence that reduction of SOCE by TRPC6 KO results in neuronal hyperexcitability, which we hypothesize is an important contributor to the cellular pathophysiology underlying hyperactivity in some ASD.


Autism Spectrum Disorder , Autistic Disorder , Pluripotent Stem Cells , Humans , TRPC6 Cation Channel/genetics , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Calcium/metabolism , Neurons/metabolism , Pluripotent Stem Cells/metabolism
9.
Adv Sci (Weinh) ; 10(15): e2206823, 2023 05.
Article En | MEDLINE | ID: mdl-37058136

Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.


Calcium , Membrane Fusion , Calcium/metabolism , Membrane Fusion/physiology , Cell Membrane/chemistry , Exocytosis
10.
Front Neurosci ; 17: 1302470, 2023.
Article En | MEDLINE | ID: mdl-38260021

We investigated whether a homozygous recessive genetic variant of NSF attachment protein beta (NAPB) gene inherited by monozygotic triplets contributed to their phenotype of early-onset epilepsy and autism. Induced pluripotent stem cell (iPSC) lines were generated from all three probands and both parents. The NAPB genetic variation was corrected in iPSC lines from two probands by CRISPR/Cas9 gene editing. Cortical neurons were produced by directed, in vitro differentiation from all iPSC lines. These cell line-derived neurons enabled us to determine that the genetic variation in the probands causes exon skipping and complete absence of NAPB protein. Electrophysiological and transcriptomic comparisons of cortical neurons derived from parents and probands cell lines indicate that loss of NAPB function contributes to alterations in neuronal functions and likely contributed to the impaired neurodevelopment of the triplets.

11.
Sci Rep ; 12(1): 22407, 2022 12 27.
Article En | MEDLINE | ID: mdl-36575295

Synaptotagmin-1 is a vesicular protein and Ca2+ sensor for Ca2+-dependent exocytosis. Ca2+ induces synaptotagmin-1 binding to its own vesicle membrane, called the cis-interaction, thus preventing the trans-interaction of synaptotagmin-1 to the plasma membrane. However, the electrostatic regulation of the cis- and trans-membrane interaction of synaptotagmin-1 was poorly understood in different Ca2+-buffering conditions. Here we provide an assay to monitor the cis- and trans-membrane interactions of synaptotagmin-1 by using native purified vesicles and the plasma membrane-mimicking liposomes (PM-liposomes). Both ATP and EGTA similarly reverse the cis-membrane interaction of synaptotagmin-1 in free [Ca2+] of 10-100 µM. High PIP2 concentrations in the PM-liposomes reduce the Hill coefficient of vesicle fusion and synaptotagmin-1 membrane binding; this observation suggests that local PIP2 concentrations control the Ca2+-cooperativity of synaptotagmin-1. Our data provide evidence that Ca2+ chelators, including EGTA and polyphosphate anions such as ATP, ADP, and AMP, electrostatically reverse the cis-interaction of synaptotagmin-1.


Liposomes , Synaptotagmin I , Liposomes/metabolism , Static Electricity , Egtazic Acid/metabolism , Synaptotagmin I/metabolism , Cell Membrane/metabolism , Membrane Fusion/physiology , Exocytosis/physiology , Adenosine Triphosphate/metabolism , Calcium/metabolism , Synaptotagmins/metabolism , SNARE Proteins/metabolism
13.
Front Mol Neurosci ; 15: 979061, 2022.
Article En | MEDLINE | ID: mdl-36277487

Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.

14.
Front Integr Neurosci ; 16: 879832, 2022.
Article En | MEDLINE | ID: mdl-35655952

Extracellular vesicles (EVs) are membrane vesicles released from cells to the extracellular space, involved in cell-to-cell communication by the horizontal transfer of biomolecules such as proteins and RNA. Because EVs can cross the blood-brain barrier (BBB), circulating through the bloodstream and reflecting the cell of origin in terms of disease prognosis and severity, the contents of plasma EVs provide non-invasive biomarkers for neurological disorders. However, neuronal EV markers in blood plasma remain unclear. EVs are very heterogeneous in size and contents, thus bulk analyses of heterogeneous plasma EVs using Western blot and ELISA have limited utility. In this study, using flow cytometry to analyze individual neuronal EVs, we show that our plasma EVs isolated by size exclusion chromatography are mainly CD63-positive exosomes of endosomal origin. As a neuronal EV marker, neural cell adhesion molecule (NCAM) is highly enriched in EVs released from induced pluripotent stem cells (iPSCs)-derived cortical neurons and brain organoids. We identified the subpopulations of plasma EVs that contain NCAM using flow cytometry-based individual EV analysis. Our results suggest that plasma NCAM-positive neuronal EVs can be used to discover biomarkers for neurological disorders.

15.
Methods Mol Biol ; 2257: 269-292, 2022.
Article En | MEDLINE | ID: mdl-34432284

Exosomes, a type of extracellular vesicle, are small vesicles (30-100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.


Cell Communication , Exosomes/genetics , Extracellular Vesicles , Humans , MicroRNAs/genetics , Neoplasms
16.
Cells ; 10(8)2021 08 03.
Article En | MEDLINE | ID: mdl-34440741

Retinal detachment (RD) is a sight-threatening condition, leading to photoreceptor cell death; however, only a few studies provide insight into its effects on the entire retinal region. We examined the spatiotemporal changes in glial responses in a mouse RD model. In electroretinography, a- and b-waves were reduced in a time-dependent manner. Hematoxylin and eosin staining revealed a gradual decrease in the outer nuclear layer throughout the retinal region. Terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay showed that TUNEL-positive photoreceptors increased 5 days after RD and decreased by 14 days. Glial response was evaluated by immunohistochemistry using antibodies against glial fibrillary acidic protein (GFAP, Müller glial marker) and Iba-1 (microglial marker) and osteopontin (OPN, activated microglial marker). GFAP immunoreactivity increased after 7 days in complete RD, and was retained for 14 days. OPN expression increased in microglial cells 3-7 days after RD, and decreased by 14 days in the detached and border regions. Although OPN was not expressed in the intact region, morphologically activated microglial cells were observed. These retinal glial cell responses and photoreceptor degeneration in the border and intact regions suggest that the effects of RD in the border and intact retinal regions need to be understood further.


Ependymoglial Cells/metabolism , Microglia/metabolism , Retinal Detachment/pathology , Animals , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Electroretinography , Ependymoglial Cells/cytology , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/cytology , Osteopontin/metabolism , Retina/metabolism , Retina/pathology , Retinal Detachment/metabolism , Up-Regulation
17.
Animals (Basel) ; 11(7)2021 Jun 28.
Article En | MEDLINE | ID: mdl-34203473

The Jeju horse is a native Korean species that has been breeding on Jeju Island since the 13th century. Their shape has a distinct appearance from the representative species, Thoroughbred. Here, we performed a comparison of the Jeju horse and Thoroughbred horse for the identification of genome-wide structure variation by using the next-generation sequencing (NGS) technique. We generated an average of 95.59 Gb of the DNA sequence, resulting in an average of 33.74 X sequence coverage from five Jeju horses. In addition, reads obtained from WGRS data almost covered the horse reference genome (mapped reads 98.4%). Based on our results, we identified 1,244,064 single nucleotide polymorphisms (SNPs), 113,498 genomic insertions, and 114,751 deletions through bioinformatics analysis. Interestingly, the results of the WGRS comparison indicated that the eqCD1a6 gene contains signatures of positive natural selection in Jeju horses. The eqCD1a6 gene is known to be involved in immunity. The eqCD1a6 gene of Jeju horses commonly contained 296 variants (275 SNPs and 21 INDELs) that were compared with its counterpart of two Thoroughbred horses. In addition, we used LOAA, digital PCR, to confirm the possibility of developing a molecular marker for species identification using variant sites. As a result, it was possible to confirm the result of the molecular marker with high accuracy. Nevertheless, eqCD1a6 was shown to be functionally intact. Taken together, we have found significant genomic variation in these two different horse species.

18.
Vet Res ; 51(1): 131, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-33059768

Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent of strangles. Hence the objective of this study was to calculate an optimal dosage of cefquinome against S. equi based on pharmacokinetics and pharmacodynamics integration. Cefquinome (1.0 mg/kg) was administered by intravenous and intramuscular routes to six healthy thoroughbred foals. Serum cefquinome concentrations were determined by high-performance liquid chromatography. The in vitro and ex vivo antibacterial activity were determined from minimum inhibitory concentrations (MIC) and bacterial killing curves. The optimal dosage was calculated from the integration of pharmacokinetic parameters and area under the curve (AUC24h/MIC) values. Total body clearance and volume of distribution of cefquinome after intravenous administration were 0.06 L/h/kg and 0.09 L/kg, respectively. Following intramuscular administration, a maximum concentration of 0.73 µg/mL at 1.52 h (Tmax) and a systemic bioavailability of 37.45% were observed. The MIC of cefquinome against S. equi was 0.016 µg/mL. The ex vivo AUC24h/MIC values representing bacteriostatic, and bactericidal activity were 113.11, and 143.14 h, respectively. Whereas the %T > MIC for bactericidal activity was 153.34%. In conclusion, based on AUC24h/MIC values and pharmacokinetic parameters, cefquinome when administered by intramuscularly at a dosage of 0.53 mg/kg every 24 h, would be effective against infection caused by S. equi in foals. Further studies may be necessary to confirm its therapeutic efficacy in a clinical environment.


Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Horse Diseases/drug therapy , Streptococcal Infections/veterinary , Streptococcus/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Cephalosporins/pharmacokinetics , Horses , Injections, Intramuscular/veterinary , Microbial Sensitivity Tests/veterinary , Streptococcal Infections/drug therapy
19.
Int J Endocrinol ; 2020: 9879517, 2020.
Article En | MEDLINE | ID: mdl-32774367

METHODS: This cross-sectional study based on the Korean National Diabetes Program 2 registry used its baseline clinical data collected from seven participating university hospitals in Korea. Patients with no significant changes in their oral hypoglycemic agents and no diabetes-related complications within the year prior to participation were enrolled. Patients' clinical characteristics according to metformin use were analyzed. RESULTS: Among 858 subjects included in the analyses, 706 were metformin users and 152 were nonmetformin users. Metformin users were significantly younger and had higher and glycated hemoglobin with significantly lower rates of accompanying microvascular complications such as retinopathy, cataracts, overt proteinuria, renal insufficiency, and peripheral neuropathy than nonusers. Meanwhile, there was a significantly lower prevalence of malignancy and depression among metformin users. These associations remained significant in multivariate analyses. The prevalence rate of macrovascular complications was not significantly different between the two groups. CONCLUSIONS: There were significant differences with respect to clinical characteristics and comorbidity prevalence according to metformin use among Korean type 2 diabetes patients. Long-term follow-up of these patients is necessary to observe how this difference will affect clinical outcomes for these patients.

20.
BMC Microbiol ; 20(1): 212, 2020 07 17.
Article En | MEDLINE | ID: mdl-32680572

BACKGROUND: DNA extraction is an important factor influencing the microbiome profile in fecal samples. Considering that the QIAamp DNA Stool Mini Kit, one of the most commonly used DNA extraction kits, is no longer manufactured, this study aimed to investigate whether a new commercially available kit, the QIAamp PowerFecal Pro DNA Kit, yields comparable microbiome profiles with those previously obtained using the QIAamp DNA Stool Mini Kit. RESULTS: We extracted DNA from fecal samples of 10 individuals using three protocols (protocol P of the QIAamp PowerFecal Pro DNA Kit, and protocols SB and S of the QIAamp DNA Stool Mini Kit with and without an additional bead-beating step, respectively) in triplicate. Ninety extracted DNA samples were subjected to 16S rRNA gene sequencing. DNA quality measured by 260/280 absorbance ratios was found to be optimal in protocol P. Additionally, the DNA quantity and microbiome diversity obtained using protocol P were significantly higher than those of protocol S, however, did not differ significantly from those of protocol SB. Based on the overall microbiome profiles, variations between protocol P and protocol SB or S were significantly less than between-individual variations. Furthermore, most genera were not differentially abundant in protocol P compared to the other protocols, and the number of differentially abundant genera, as well as the degree of fold-changes were smaller between protocols P and SB than between protocols P and S. CONCLUSIONS: The QIAamp PowerFecal Pro DNA Kit exhibited microbiome analysis results that were comparable with those of the QIAamp DNA Stool Mini Kit with a bead-beating step. These results will prove useful for researchers investigating the gut microbiome in selecting an alternative protocol to the widely used but discontinued kit.


Bacteria/classification , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , DNA, Ribosomal/analysis , DNA, Ribosomal/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome , Humans , Phylogeny , RNA, Ribosomal, 16S/analysis , Reagent Kits, Diagnostic
...