Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Rheumatology (Oxford) ; 63(2): 298-308, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37624925

Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.


Antirheumatic Agents , Arthritis, Rheumatoid , Janus Kinase Inhibitors , Psoriasis , Humans , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Janus Kinases/metabolism , Psoriasis/drug therapy
2.
Clin Transl Sci ; 17(1): e13688, 2024 01.
Article En | MEDLINE | ID: mdl-37984057

Upadacitinib is a selective Janus kinase (JAK) inhibitor which is approved by the US Food and Drug Administration, the European Medicines Agency, as well as other agencies around the world for the treatment of several chronic inflammatory diseases, including rheumatic, dermatologic, and gastrointestinal diseases. Through inhibition of JAK, upadacitinib inhibits phosphorylation of downstream effector proteins, which consequently inhibits cytokine signaling for key pathways involved in inflammatory diseases. Upadacitinib more potently inhibits JAK1 than other JAK isoforms. The pharmacokinetics, pharmacodynamics, efficacy, and safety of upadacitinib were characterized in many clinical trials, which demonstrated the superiority of upadacitinib treatment over placebo or an active comparator in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, non-radiographic axial spondyloarthritis, atopic dermatitis, Crohn's disease, and ulcerative colitis. The safety profile of upadacitinib supported a favorable benefit-risk profile across all the approved indications. In this article, we review the mechanism of action of upadacitinib and describe how the JAK-STAT (Janus kinase-signal transducers and activators of transcription) pathway is involved in the pathogenesis of several chronic and progressive immune-mediated inflammatory diseases. In addition, this review also provides an overview of key clinical trials that were conducted as well as relevant data which supported the clinical development of upadacitinib and informed the recommended dose(s) in each of the approved indications.


Arthritis, Rheumatoid , Heterocyclic Compounds, 3-Ring , Janus Kinase Inhibitors , Spondylitis, Ankylosing , United States , Humans , Translational Science, Biomedical , Arthritis, Rheumatoid/drug therapy , Spondylitis, Ankylosing/drug therapy , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/therapeutic use
3.
BMC Rheumatol ; 2: 23, 2018.
Article En | MEDLINE | ID: mdl-30886973

BACKGROUND: Anti-cytokine therapies such as adalimumab, tocilizumab, and the small molecule JAK inhibitor tofacitinib have proven that cytokines and their subsequent downstream signaling processes are important in the pathogenesis of rheumatoid arthritis. Tofacitinib, a pan-JAK inhibitor, is the first approved JAK inhibitor for the treatment of RA and has been shown to be effective in managing disease. However, in phase 2 dose-ranging studies tofacitinib was associated with dose-limiting tolerability and safety issues such as anemia. Upadacitinib (ABT-494) is a selective JAK1 inhibitor that was engineered to address the hypothesis that greater JAK1 selectivity over other JAK family members will translate into a more favorable benefit:risk profile. Upadacitinib selectively targets JAK1 dependent disease drivers such as IL-6 and IFNγ, while reducing effects on reticulocytes and natural killer (NK) cells, which potentially contributed to the tolerability issues of tofacitinib. METHODS: Structure-based hypotheses were used to design the JAK1 selective inhibitor upadacitinib. JAK family selectivity was defined with in vitro assays including biochemical assessments, engineered cell lines, and cytokine stimulation. In vivo selectivity was defined by the efficacy of upadacitinib and tofacitinib in a rat adjuvant induced arthritis model, activity on reticulocyte deployment, and effect on circulating NK cells. The translation of the preclinical JAK1 selectivity was assessed in healthy volunteers using ex vivo stimulation with JAK-dependent cytokines. RESULTS: Here, we show the structural basis for the JAK1 selectivity of upadacitinib, along with the in vitro JAK family selectivity profile and subsequent in vivo physiological consequences. Upadacitinib is ~ 60 fold selective for JAK1 over JAK2, and > 100 fold selective over JAK3 in cellular assays. While both upadacitinib and tofacitinib demonstrated efficacy in a rat model of arthritis, the increased selectivity of upadacitinib for JAK1 resulted in a reduced effect on reticulocyte deployment and NK cell depletion relative to efficacy. Ex vivo pharmacodynamic data obtained from Phase I healthy volunteers confirmed the JAK1 selectivity of upadactinib in a clinical setting. CONCLUSIONS: The data presented here highlight the JAK1 selectivity of upadacinitinib and supports its use as an effective therapy for the treatment of RA with the potential for an improved benefit:risk profile.

...