Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(31): eadg0666, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531435

RESUMEN

The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.


Asunto(s)
Comunicación Autocrina , Espinas Dendríticas , Espinas Dendríticas/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo
2.
J Neurosci ; 43(30): 5432-5447, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37277178

RESUMEN

The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.


Asunto(s)
Isoenzimas , Transducción de Señal , Animales , Ratones , Transducción de Señal/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo
3.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33139322

RESUMEN

ADAP1/Centaurin-α1 (CentA1) functions as an Arf6 GTPase-activating protein highly enriched in the brain. Previous studies demonstrated the involvement of CentA1 in brain function as a regulator of dendritic differentiation and a potential mediator of Alzheimer's disease (AD) pathogenesis. To better understand the neurobiological functions of CentA1 signaling in the brain, we developed Centa1 knock-out (KO) mice. The KO animals showed neither brain development nor synaptic ultrastructure deficits in the hippocampus. However, they exhibited significantly higher density and enhanced structural plasticity of dendritic spines in the CA1 region of the hippocampus compared with non-transgenic (NTG) littermates. Moreover, the deletion of Centa1 improved performance in the object-in-place (OIP) spatial memory task. These results suggest that CentA1 functions as a negative regulator of spine density and plasticity, and of hippocampus-dependent memory formation. Thus, CentA1 and its downstream signaling may serve as a potential therapeutic target to prevent memory decline associated with aging and brain disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Espinas Dendríticas , Hipocampo , Memoria , Proteínas del Tejido Nervioso/genética , Enfermedad de Alzheimer , Animales , Espinas Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/metabolismo , Ratones
4.
Neuron ; 105(5): 799-812.e5, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31883788

RESUMEN

Sensory experiences cause long-term modifications of neuronal circuits by modulating activity-dependent transcription programs that are vital for regulation of long-term synaptic plasticity and memory. However, it has not been possible to precisely determine the interaction between neuronal activity patterns and transcription factor activity. Here we present a technique using two-photon fluorescence lifetime imaging (2pFLIM) with new FRET biosensors to chronically image in vivo signaling of CREB, an activity-dependent transcription factor important for synaptic plasticity, at single-cell resolution. Simultaneous imaging of the red-shifted CREB sensor and GCaMP permitted exploration of how experience shapes the interplay between CREB and neuronal activity in the neocortex of awake mice. Dark rearing increased the sensitivity of CREB activity to Ca2+ elevations and prolonged the duration of CREB activation to more than 24 h in the visual cortex. This technique will allow researchers to unravel the transcriptional dynamics underlying experience-dependent plasticity in the brain.


Asunto(s)
Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neocórtex/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Animales , Oscuridad , Transferencia Resonante de Energía de Fluorescencia , Ratones , Neocórtex/citología , Vías Nerviosas , Neuronas/citología , Estimulación Luminosa , Transducción de Señal , Análisis de la Célula Individual , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Corteza Visual/citología , Corteza Visual/metabolismo
5.
Nat Neurosci ; 21(8): 1027-1037, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013171

RESUMEN

The protein kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity and, if so, how this synaptic activity is encoded by PKC. Here, using newly developed, isozyme-specific sensors, we demonstrate that classical isozymes are activated to varying degrees and with distinct kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity depends on a PDZ-binding motif present only in PKCα. The activation of PKCα during plasticity requires both NMDA receptor Ca2+ flux and autocrine brain-derived neurotrophic factor (BDNF)-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that, by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampus-dependent learning.


Asunto(s)
Comunicación Autocrina/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Señalización del Calcio/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C-alfa/fisiología , Animales , Comunicación Autocrina/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Señalización del Calcio/genética , Espinas Dendríticas , Activación Enzimática , Hipocampo/fisiología , Isoenzimas , Cinética , Aprendizaje/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa C-alfa/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29911178

RESUMEN

Pyramidal neurons in hippocampal area CA2 are distinct from neighboring CA1 in that they resist synaptic long-term potentiation (LTP) at CA3 Schaffer collateral synapses. Regulator of G protein signaling 14 (RGS14) is a complex scaffolding protein enriched in CA2 dendritic spines that naturally blocks CA2 synaptic plasticity and hippocampus-dependent learning, but the cellular mechanisms by which RGS14 gates LTP are largely unexplored. A previous study has attributed the lack of plasticity to higher rates of calcium (Ca2+) buffering and extrusion in CA2 spines. Additionally, a recent proteomics study revealed that RGS14 interacts with two key Ca2+-activated proteins in CA2 neurons: calcium/calmodulin and CaMKII. Here, we investigated whether RGS14 regulates Ca2+ signaling in its host CA2 neurons. We found that the nascent LTP of CA2 synapses caused by genetic knockout (KO) of RGS14 in mice requires Ca2+-dependent postsynaptic signaling through NMDA receptors, CaMK, and PKA, revealing similar mechanisms to those in CA1. We report that RGS14 negatively regulates the long-term structural plasticity of dendritic spines of CA2 neurons. We further show that wild-type (WT) CA2 neurons display significantly attenuated spine Ca2+ transients during structural plasticity induction compared with the Ca2+ transients from CA2 spines of RGS14 KO mice and CA1 controls. Finally, we demonstrate that acute overexpression of RGS14 is sufficient to block spine plasticity, and elevating extracellular Ca2+ levels restores plasticity to RGS14-expressing neurons. Together, these results demonstrate for the first time that RGS14 regulates plasticity in hippocampal area CA2 by restricting Ca2+ elevations in CA2 spines and downstream signaling pathways.


Asunto(s)
Región CA2 Hipocampal/fisiología , Señalización del Calcio , Potenciación a Largo Plazo , Células Piramidales/fisiología , Proteínas RGS/fisiología , Sinapsis/fisiología , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/fisiología , Femenino , Masculino , Ratones Noqueados , Receptores de N-Metil-D-Aspartato
8.
Neuron ; 94(4): 800-808.e4, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28521133

RESUMEN

CaMKII plays a critical role in decoding calcium (Ca2+) signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ signals in spines remain elusive. Here, we measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each pulse during repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. Thr286 phosphorylation slows the decay of CaMKII and thus lowers the frequency required to induce spine plasticity by several fold. In the absence of Thr286 phosphorylation, increasing the stimulation frequency results in high peak mutant CaMKIIT286A activity that is sufficient for inducing plasticity. Our findings demonstrate that Thr286 phosphorylation plays an important role in induction of LTP by integrating Ca2+ signals, and it greatly promotes, but is dispensable for, the activation of CaMKII and LTP.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Células Piramidales/metabolismo , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Microscopía Fluorescente , Plasticidad Neuronal , Técnicas de Placa-Clamp , Fosforilación , Células Piramidales/fisiología
9.
Neuron ; 94(1): 37-47.e5, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28318784

RESUMEN

Elucidating temporal windows of signaling activity required for synaptic and behavioral plasticity is crucial for understanding molecular mechanisms underlying these phenomena. Here, we developed photoactivatable autocamtide inhibitory peptide 2 (paAIP2), a genetically encoded, light-inducible inhibitor of CaMKII activity. The photoactivation of paAIP2 in neurons for 1-2 min during the induction of LTP and structural LTP (sLTP) of dendritic spines inhibited these forms of plasticity in hippocampal slices of rodents. However, photoactivation ∼1 min after the induction did not affect them, suggesting that the initial 1 min of CaMKII activation is sufficient for inducing LTP and sLTP. Furthermore, the photoactivation of paAIP2 expressed in amygdalar neurons of mice during an inhibitory avoidance task revealed that CaMKII activity during, but not after, training is required for the memory formation. Thus, we demonstrated that paAIP2 is useful to elucidate the temporal window of CaMKII activation required for synaptic plasticity and learning.


Asunto(s)
Reacción de Prevención/fisiología , Región CA1 Hipocampal/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Animales , Animales Recién Nacidos , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Espinas Dendríticas/fisiología , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Células HeLa , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Immunoblotting , Inmunohistoquímica , Cinética , Potenciación a Largo Plazo/fisiología , Ratones , Microscopía Fluorescente , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Células Piramidales/fisiología , Proteínas de Unión al ARN , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Represoras , Proteínas Supresoras de Tumor/genética
10.
Nature ; 538(7623): 99-103, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27680698

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are crucial for many forms of neuronal plasticity, including structural long-term potentiation (sLTP), which is a correlate of an animal's learning. However, it is unknown whether BDNF release and TrkB activation occur during sLTP, and if so, when and where. Here, using a fluorescence resonance energy transfer-based sensor for TrkB and two-photon fluorescence lifetime imaging microscopy, we monitor TrkB activity in single dendritic spines of CA1 pyramidal neurons in cultured murine hippocampal slices. In response to sLTP induction, we find fast (onset < 1 min) and sustained (>20 min) activation of TrkB in the stimulated spine that depends on NMDAR (N-methyl-d-aspartate receptor) and CaMKII signalling and on postsynaptically synthesized BDNF. We confirm the presence of postsynaptic BDNF using electron microscopy to localize endogenous BDNF to dendrites and spines of hippocampal CA1 pyramidal neurons. Consistent with these findings, we also show rapid, glutamate-uncaging-evoked, time-locked BDNF release from single dendritic spines using BDNF fused to superecliptic pHluorin. We demonstrate that this postsynaptic BDNF-TrkB signalling pathway is necessary for both structural and functional LTP. Together, these findings reveal a spine-autonomous, autocrine signalling mechanism involving NMDAR-CaMKII-dependent BDNF release from stimulated dendritic spines and subsequent TrkB activation on these same spines that is crucial for structural and functional plasticity.


Asunto(s)
Comunicación Autocrina , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/ultraestructura , Activación Enzimática , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Microscopía de Fluorescencia por Excitación Multifotónica , Densidad Postsináptica/metabolismo , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultivo de Tejidos
11.
Science ; 342(6162): 1107-11, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24288335

RESUMEN

The late phase of long-term potentiation (LTP) at glutamatergic synapses, which is thought to underlie long-lasting memory, requires gene transcription in the nucleus. However, the mechanism by which signaling initiated at synapses is transmitted into the nucleus to induce transcription has remained elusive. Here, we found that induction of LTP in only three to seven dendritic spines in rat CA1 pyramidal neurons was sufficient to activate extracellular signal-regulated kinase (ERK) in the nucleus and regulate downstream transcription factors. Signaling from individual spines was integrated over a wide range of time (>30 minutes) and space (>80 micrometers). Spatially dispersed inputs over multiple branches activated nuclear ERK much more efficiently than clustered inputs over one branch. Thus, biochemical signals from individual dendritic spines exert profound effects on nuclear signaling.


Asunto(s)
Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciación a Largo Plazo , Animales , Región CA1 Hipocampal/enzimología , Células Cultivadas , Espinas Dendríticas/enzimología , Glutamatos/metabolismo , Ratas , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...