Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 80, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36843114

RESUMEN

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Humanos , Reordenamiento Génico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Fenotipo
2.
Haematologica ; 108(7): 1768-1781, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519325

RESUMEN

The BCL-2 inhibitor venetoclax has revolutionized the treatment of acute myeloid leukemia (AML) in patients not benefiting from intensive chemotherapy. Nevertheless, treatment failure remains a challenge, and predictive markers are needed, particularly for relapsed or refractory AML. Ex vivo drug sensitivity testing may correlate with outcomes, but its prospective predictive value remains unexplored. Here we report the results of the first stage of the prospective phase II VenEx trial evaluating the utility and predictiveness of venetoclax sensitivity testing using different cell culture conditions and cell viability assays in patients receiving venetoclax-azacitidine. Participants with de novo AML ineligible for intensive chemotherapy, relapsed or refractory AML, or secondary AML were included. The primary endpoint was the treatment response in participants showing ex vivo sensitivity and the key secondary endpoints were the correlation of sensitivity with responses and survival. Venetoclax sensitivity testing was successful in 38/39 participants. Experimental conditions significantly influenced the predictive accuracy. Blast-specific venetoclax sensitivity measured in conditioned medium most accurately correlated with treatment outcomes; 88% of sensitive participants achieved a treatment response. The median survival was significantly longer for participants who were ex vivo-sensitive to venetoclax (14.6 months for venetoclax-sensitive patients vs. 3.5 for venetoclax-insensitive patients, P<0.001). This analysis illustrates the feasibility of integrating drug-response profiling into clinical practice and demonstrates excellent predictivity. This trial is registered with ClinicalTrials.gov identifier: NCT04267081.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Estudios Prospectivos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Sci Transl Med ; 14(650): eabn3248, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35731890

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.


Asunto(s)
Quinasas CDC2-CDC28 , Leucemia Mieloide Aguda , Animales , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/farmacología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Células Madre Neoplásicas , Proteómica
4.
Cancer Discov ; 12(2): 388-401, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34789538

RESUMEN

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Técnicas de Apoyo para la Decisión , Leucemia Mieloide Aguda/tratamiento farmacológico , Grupo de Atención al Paciente , Medicina de Precisión , Femenino , Finlandia , Humanos , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Inducción de Remisión , Análisis de Supervivencia
5.
Sci Rep ; 11(1): 23565, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876631

RESUMEN

FLT3 internal tandem duplication (FLT3-ITD) is a frequent mutation in acute myeloid leukemia (AML) and remains a strong prognostic factor due to high rate of disease recurrence. Several FLT3-targeted agents have been developed, but determinants of variable responses to these agents remain understudied. Here, we investigated the role FLT3-ITD allelic ratio (ITD-AR), ITD length, and associated gene expression signatures on FLT3 inhibitor response in adult AML. We performed fragment analysis, ex vivo drug testing, and next generation sequencing (RNA, exome) to 119 samples from 87 AML patients and 13 healthy bone marrow controls. We found that ex vivo response to FLT3 inhibitors is significantly associated with ITD-AR, but not with ITD length. Interestingly, we found that the HLF gene is overexpressed in FLT3-ITD+ AML and associated with ITD-AR. The retrospective analysis of AML patients treated with FLT3 inhibitor sorafenib showed that patients with high HLF expression and ITD-AR had better clinical response to therapy compared to those with low ITD-AR and HLF expression. Thus, our findings suggest that FLT3 ITD-AR together with increased HLF expression play a role in variable FLT3 inhibitor responses observed in FLT3-ITD+ AML patients.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Adulto , Anciano , Alelos , Antineoplásicos/uso terapéutico , Estudios de Casos y Controles , Femenino , Duplicación de Gen , Expresión Génica , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos , Sorafenib/uso terapéutico , Secuencias Repetidas en Tándem , Resultado del Tratamiento
6.
Front Cell Dev Biol ; 9: 723016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485305

RESUMEN

Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients' survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members (S100A8, S100A9, and S100A12) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.

7.
Blood Adv ; 5(20): 4125-4139, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34478517

RESUMEN

Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.


Asunto(s)
Mieloma Múltiple , Preparaciones Farmacéuticas , Línea Celular Tumoral , Humanos , Mieloma Múltiple/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína bcl-X
8.
Haematologica ; 105(6): 1527-1538, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31439679

RESUMEN

Innate drug sensitivity in healthy cells aids identification of lineage specific anti-cancer therapies and reveals off-target effects. To characterize the diversity in drug responses in the major hematopoietic cell types, we simultaneously assessed their sensitivity to 71 small molecules utilizing a multi-parametric flow cytometry assay and mapped their proteomic and basal signaling profiles. Unsupervised hierarchical clustering identified distinct drug responses in healthy cell subsets based on their cellular lineage. Compared to other cell types, CD19+/B and CD56+/NK cells were more sensitive to dexamethasone, venetoclax and midostaurin, while monocytes were more sensitive to trametinib. Venetoclax exhibited dose-dependent cell selectivity that inversely correlated to STAT3 phosphorylation. Lineage specific effect of midostaurin was similarly detected in CD19+/B cells from healthy, acute myeloid leukemia and chronic lymphocytic leukemia samples. Comparison of drug responses in healthy and neoplastic cells showed that healthy cell responses are predictive of the corresponding malignant cell response. Taken together, understanding drug sensitivity in the healthy cell-of-origin provides opportunities to obtain a new level of therapy precision and avoid off-target toxicity.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Preparaciones Farmacéuticas , Citometría de Flujo , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Proteómica
10.
Leuk Lymphoma ; 59(3): 725-732, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28776436

RESUMEN

The t(5;11)(q35;p15.4) is a clinically significant marker of poor prognosis in acute myeloid leukemia (AML), which is difficult to detect due to sub-telomeric localization of the breakpoints. To facilitate the detection of this rearrangement, we studied NUP98-NSD1 transcript variants in patients with the t(5;11) using paired-end RNA sequencing and standard molecular biology techniques. We discovered three NUP98-NSD1 transcripts with two fusion junctions (NUP98 exon 11-12/NSD1 exon 6), alternative 5' donor site in NUP98 exon 7, and NSD1 exon 7 skipping. Two of the transcripts were in-frame and occurred in all t(5;11) samples (N = 5). The exonic splicing events were present in all samples (N = 23) regardless of the NUP98-NSD1 suggesting that these novel splice events are unassociated with t(5;11). In conclusion, we provide evidence of two different NUP98-NSD1 fusion transcripts in adult AML, which result in functional proteins and represent suitable molecular entities for monitoring t(5;11) AML patients.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 5/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , Translocación Genética , Adulto , Femenino , Estudios de Seguimiento , Reordenamiento Génico , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
11.
Oncotarget ; 8(57): 97516-97527, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228628

RESUMEN

Constitutive JAK/STAT3 signaling contributes to disease progression in many lymphoproliferative disorders. Recent genetic analyses have revealed gain-of-function STAT3 mutations in lymphoid cancers leading to hyperactivation of STAT3, which may represent a potential therapeutic target. Using a functional reporter assay, we screened 306 compounds with selective activity against various target molecules to identify drugs capable of inhibiting the cellular activity of STAT3. Top hits were further validated with additional models including STAT3-mutated natural killer (NK)-cell leukemia/lymphoma cell lines and primary large granular lymphocytic (LGL) leukemia cells to assess their ability to inhibit STAT3 phosphorylation and STAT3 dependent cell viability. We identified JAK, mTOR, Hsp90 and CDK inhibitors as potent inhibitors of both WT and mutant STAT3 activity. The Hsp90 inhibitor luminespib was highly effective at reducing the viability of mutant STAT3 NK cell lines and LGL leukemia patient samples. Luminespib decreased the phosphorylation of mutant STAT3 at Y705, whereas JAK1/JAK2 inhibitor ruxolitinib had reduced efficacy on mutant STAT3 phosphorylation. Additionally, combinations involving Hsp90, JAK and mTOR inhibitors were more effective at reducing cell viability than single agents. Our findings show alternative approaches to inhibit STAT3 activity and suggest Hsp90 as a therapeutic target in lymphoproliferative disorders with constitutively active STAT3.

12.
Oncotarget ; 8(34): 56338-56350, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915594

RESUMEN

Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4;14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.

13.
BMC Genomics ; 18(1): 629, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818039

RESUMEN

BACKGROUND: RNA sequencing (RNA-seq) has become an indispensable tool to identify disease associated transcriptional profiles and determine the molecular underpinnings of diseases. However, the broad adaptation of the methodology into the clinic is still hampered by inconsistent results from different RNA-seq protocols and involves further evaluation of its analytical reliability using patient samples. Here, we applied two commonly used RNA-seq library preparation protocols to samples from acute leukemia patients to understand how poly-A-tailed mRNA selection (PA) and ribo-depletion (RD) based RNA-seq library preparation protocols affect gene fusion detection, variant calling, and gene expression profiling. RESULTS: Overall, the protocols produced similar results with consistent outcomes. Nevertheless, the PA protocol was more efficient in quantifying expression of leukemia marker genes and showed better performance in the expression-based classification of leukemia. Independent qRT-PCR experiments verified that the PA protocol better represented total RNA compared to the RD protocol. In contrast, the RD protocol detected a higher number of non-coding RNA features and had better alignment efficiency. The RD protocol also recovered more known fusion-gene events, although variability was seen in fusion gene predictions. CONCLUSION: The overall findings provide a framework for the use of RNA-seq in a precision medicine setting with limited number of samples and suggest that selection of the library preparation protocol should be based on the objectives of the analysis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Leucemia/genética , Análisis de Secuencia de ARN , Humanos
14.
Blood ; 130(6): 789-802, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28619982

RESUMEN

The bone marrow (BM) provides a protective microenvironment to support the survival of leukemic cells and influence their response to therapeutic agents. In acute myeloid leukemia (AML), the high rate of relapse may in part be a result of the inability of current treatment to effectively overcome the protective influence of the BM niche. To better understand the effect of the BM microenvironment on drug responses in AML, we conducted a comprehensive evaluation of 304 inhibitors, including approved and investigational agents, comparing ex vivo responses of primary AML cells in BM stroma-derived and standard culture conditions. In the stroma-based conditions, the AML patient cells exhibited significantly reduced sensitivity to 12% of the tested compounds, including topoisomerase II, B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and many tyrosine kinase inhibitors (TKIs). The loss of TKI sensitivity was most pronounced in patient samples harboring FLT3 or PDGFRB alterations. In contrast, the stroma-derived conditions enhanced sensitivity to Janus kinase (JAK) inhibitors. Increased cell viability and resistance to specific drug classes in the BM stroma-derived conditions was a result of activation of alternative signaling pathways mediated by factors secreted by BM stromal cells and involved a switch from BCL2 to BCLXL-dependent cell survival. Moreover, the JAK1/2 inhibitor ruxolitinib restored sensitivity to the BCL2 inhibitor venetoclax in AML patient cells ex vivo in different model systems and in vivo in an AML xenograft mouse model. These findings highlight the potential of JAK inhibitors to counteract stroma-induced resistance to BCL2 inhibitors in AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Nitrilos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/farmacología , Pirimidinas , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/patología , Sulfonamidas/farmacología , Células Tumorales Cultivadas
15.
Genome Announc ; 2(1)2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24435855

RESUMEN

Here we report full-length sequencing of the first large set of influenza A(H1N1)pdm09 virus genomes isolated in Finland between the years 2009 and 2013 and discuss the advantages and needs of influenza virus sequencing efforts.

16.
Cancer Discov ; 3(12): 1416-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056683

RESUMEN

UNLABELLED: We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profiling and ex vivo drug sensitivity and resistance testing (DSRT) of patients' cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered five major taxonomic drug-response subtypes based on DSRT profiles, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3-ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses. After progression under DSRT-guided therapies, AML cells displayed significant clonal evolution and novel genomic changes potentially explaining resistance, whereas ex vivo DSRT data showed resistance to the clinically applied drugs and new vulnerabilities to previously ineffective drugs. SIGNIFICANCE: Here, we demonstrate an ISM strategy to optimize safe and effective personalized cancer therapies for individual patients as well as to understand and predict disease evolution and the next line of therapy. This approach could facilitate systematic drug repositioning of approved targeted drugs as well as help to prioritize and de-risk emerging drugs for clinical testing.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Medicina de Precisión/métodos , Antineoplásicos/farmacología , Progresión de la Enfermedad , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
17.
Infect Genet Evol ; 16: 234-47, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23462388

RESUMEN

Echovirus 6 (E-6) (family Picornaviridae, genus Enterovirus) is one of the most commonly detected enteroviruses worldwide. The aim of this study was to determine molecular evolutionary and epidemiologic patterns of E-6. A complete genome of one E-6 strain and the partial VP1 coding regions of 169 strains were sequenced and analyzed along with sequences retrieved from the GenBank. The complete genome sequence analysis suggested complex recombination history for the Finnish E-6 strain. In VP1 region, the phylogenetic analysis suggested three major clusters that were further divided to several subclusters. The evolution of VP1 coding region was dominated by negative selection suggesting that the phylogeny of E-6 VP1 gene is predominantly a result of synonymous substitutions (i.e. neutral genetic drift). The partial VP1 sequence analysis suggested wide geographical distribution for some E-6 lineages. In Finland, multiple different E-6 lineages have circulated at the same time.


Asunto(s)
Echovirus 6 Humano/genética , Infecciones por Echovirus/epidemiología , Infecciones por Echovirus/virología , Evolución Molecular , Animales , Proteínas de la Cápside/genética , Línea Celular Tumoral , Chlorocebus aethiops , Análisis por Conglomerados , Echovirus 6 Humano/clasificación , Echovirus 6 Humano/aislamiento & purificación , Finlandia/epidemiología , Humanos , Epidemiología Molecular , Filogenia , Recombinación Genética , Análisis de Secuencia de Proteína , Aguas del Alcantarillado/virología
18.
N Engl J Med ; 366(20): 1905-13, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22591296

RESUMEN

BACKGROUND: T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS: We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS: Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS: The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).


Asunto(s)
Leucemia Linfocítica Granular Grande/genética , Factor de Transcripción STAT3/genética , Anciano , Exoma , Expresión Génica , Humanos , Masculino , Mutación , Receptores de Antígenos de Linfocitos T , Análisis de Secuencia de ARN , Transcripción Genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...