Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Future Virol ; 18(7): 421-438, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38051986

RESUMEN

Aim: Structure-based identification of natural compounds against SARS-CoV-2, Delta and Omicron target proteins. Materials & methods: Several known antiviral natural compounds were subjected to molecular docking and MD simulation against SARS-CoV-2 Mpro, Helicase and Spike, including Delta and Omicron Spikes. Results: Of the docked ligands, 20 selected for each complex exhibited overall good binding affinities (-7.79 to -5.06 kcal/mol) with acceptable physiochemistry following Lipinski's rule. Finally, two best ligands from each complex upon simulation showed structural stability and compactness. Conclusion: Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A were identified as potential inhibitors of SARS-CoV-2 Mpro, Helicase and Spike, while Orientin and Obetrioside also showed good binding affinities with Omicron Spike. Catechin and Neridienone A formed stable complexes with Delta Spike.


Mutant strains of SARS-CoV-2 called 'variants of concern' (VOCs) are linked to a good ability to infect, re-infect and spread among people. They are also linked to poor ability to fight the disease and reduced effectiveness of vaccines. Delta and Omicron are important VOCs because they are difficult to control and treat. Specific resistance to some drugs used to treat COVID-19 poses a further challenge. Therefore, discovering natural or plant-derived drugs with no known resistance would be valuable to the treatment of COVID-19. In this study, we screen and identify seven plant-derived compounds that may be useful to treating COVID-19 ­ we identify Quercetin-3-acetyl-glucoside, Rutin, Kaempferol, Catechin, Orientin, Obetrioside and Neridienone A as potential candidates. Orientin, Obetrioside, Catechin and Neridienone A are identified as candidates against Delta and Omicron for the first time.

2.
ACS Omega ; 8(44): 41570-41578, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969986

RESUMEN

Hepatitis E virus (HEV) is primarily a hepatotropic virus that is responsible for acute hepatitis E in the general population and for chronic hepatitis in immunocompromised individuals. In the absence of a globally accessible vaccine, pegylated interferon-α and ribavirin are the only antiviral agents available for the treatment of chronic patients. As viral RNA-dependent RNA polymerases (RdRps) are indispensable for RNA replication, they are considered potential drug targets. In this study, we screened some well-known RdRp inhibitor molecules, notably, favipiravir, sofosbuvir, remdesivir, filibuvir, and tegobuvir. Of these, monotherapy with favipiravir and sofosbuvir inhibited the RdRp activity with an IC50 value of 10.2 ± 4.9 and 5.2 ± 2.9 µM, respectively, compared to the reference drug ribavirin (3.5 ± 1.6 µM). Further investigation of the combination therapy showed a reduction in viral RNA copy numbers by approximately 90%. Therefore, favipiravir has an additive effect when used with sofosbuvir. Therefore, we propose that favipiravir is a promising anti-HEV drug that can be used in combination with sofosbuvir.

3.
J Enzyme Inhib Med Chem ; 38(1): 2280500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37975328

RESUMEN

Hepatitis E Virus (HEV) is a positively oriented RNA virus having a 7.2 kb genome. HEV consists of three open reading frames (ORF1-3). Of these, ORF1 codes for the enzymes Methyltransferase (Mtase), Papain-like cysteine protease (PCP), RNA helicase, and RNA-dependent RNA polymerase (RdRp). Unavailability of a vaccine or effective drug against HEV and considering the side effects associated with the off-label use of ribavirin (RBV) and pegylated interferons, an alternative approach is required by the modulation of specific enzymes to prevent the infection. HEV helicase is involved in unwinding the double-stranded RNA, RNA processing, transcriptional regulation, and pre-mRNA processing. Therefore, we screened FDA-approved compounds from the ZINC15 database against the modelled 3D structure of HEV helicase and found that methotrexate and compound A (Pubchem ID BTB07890) inhibit the NTPase and dsRNA unwinding activity leading to inhibition of HEV RNA replication. This may be further authenticated by in vivo study.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Metotrexato , Replicación Viral , Antiinflamatorios
4.
Future Virol ; 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908844

RESUMEN

Aim: Virtual screening of deep-sea fungal metabolites against SARS-CoV-2 Delta and Omicron spikes as potential antivirals. Materials & methods: Deep-sea fungal alkaloids (n ≥ 150) were evaluated against SARS-CoV-2, Delta and Omicron spikes, using various in silico approaches, including Admet scores, physiochemical properties, molecular docking (MD) and MD simulation (150 ns). Results: The test alkaloids complied with Admet scores and physiochemical properties within acceptable ranges, and followed Lipinski's rule of five. Of these, Cladosporium sphaerospermum-derived cladosin K (tetramate alkaloid) for SARS-CoV-2, Cystobasidium laryngis-derived saphenol (phenazine alkaloid) for Delta and Chaetomium globosum-derived chaetoglobosin E (quinoline alkaloid) for Omicron were identified as potential spike-inhibitors. Conclusion: Our data therefore, strongly warrants further experimental validations of cladosin K, saphenol and chaetoglobosin E, especially against the Omicron and Delta spikes.

5.
Saudi Pharm J ; 31(11): 101776, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37868645

RESUMEN

Chronic diabetes mellites related hyperglycemia is a major cause of mortality and morbidity due to further complications like retinopathy, hypertension and cardiovascular diseases. Though several synthetic anti-diabetes drugs specifically targeting glucose-metabolism enzymes are available, they have their own limitations, including adverse side-effects. Unlike other natural or marine-derived pharmacologically important molecules, deep-sea fungi metabolites still remain under-explored for their anti-diabetes potential. We performed structure-based virtual screening of deep-sea fungal compounds selected by their physiochemical properties, targeting crucial enzymes viz., α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B involved in glucose-metabolism pathway. Following molecular docking scores and MD simulation analyses, the selected top ten compounds for each enzyme, were subjected to pharmacokinetics prediction based on their AdmetSAR- and pharmacophore-based features. Of these, cladosporol C, tenellone F, ozazino-cyclo-(2,3-dihydroxyl-trp-tyr), penicillactam and circumdatin G were identified as potential inhibitors of α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B, respectively. Our in silico data therefore, warrants further experimental and pharmacological studies to validate their anti-diabetes therapeutic potential.

6.
Mol Med Rep ; 28(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37539729

RESUMEN

Drug­resistance in hepatitis B virus (HBV), especially due to prolonged treatment with nucleoside analogs, such as lamivudine (LAM), remains a clinical challenge. Alternatively, several plant products and isolated phytochemicals have been used as promising anti­HBV therapeutics with no sign of resistance. Among all known Rhus species, R. coriaria, R. succedanea and R. tripartite have been widely studied for their anti­HBV efficacy, however, the effects of R. retinorrhoea have not been previously investigated. The current study reported the isolation of two flavonoids, namely sakuranetin (SEK) and velutin (VEL), from the dichloromethane fraction of R. retinorrhoea aerial parts using chromatography and spectral analyses. The two flavonoids (6.25­50 µg/ml) were pre­tested for non­hepatocytotoxicity using an MTT assay and their dose­ and time­dependent inhibitory activities against HBV [hepatitis B surface antigen (HBsAg) and hepatitis B 'e' antigen (HBeAg)] in cultured HepG2.2.15 cells were assessed by ELISA. SEK and VEL at the selected doses (12.5 µg/ml) significantly inhibited HBsAg by ~58.8 and ~56.4%, respectively, and HBeAg by ~55.5 and ~52.4%, respectively, on day 5. The reference drugs LAM and quercetin (anti­HBV flavonoids), suppressed the production of HBsAg/HBeAg by ~86.4/~64 and ~84.5/~62%, respectively. Furthermore, molecular docking of the flavonoids with HBV polymerase and capsid proteins revealed the formation of stable complexes with good docking energies, thus supporting their structure­based antiviral mechanism. In conclusion, the present study was the first to demonstrate the anti­HBV therapeutic activities of SEK and VEL isolated from R. retinorrhoea.


Asunto(s)
Hepatitis B Crónica , Herpesvirus Cercopitecino 1 , Rhus , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B , Herpesvirus Cercopitecino 1/metabolismo , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/uso terapéutico , Flavonoides/química , Virus de la Hepatitis B/genética , Anticuerpos/farmacología , ADN Viral
7.
Exp Ther Med ; 26(1): 327, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37346405

RESUMEN

Hepatitis B virus (HBV) causes acute and chronic liver diseases, leading to cirrhosis and hepatocellular carcinoma. Although direct-acting nucleoside analogs, such as lamivudine (LAM), adefovir and famciclovir, are available, emergence of drug-resistance due to mutations in HBV polymerase (POL) restricts their further use. Alternatively, numerous plant products and compounds isolated from plants have been reported to confer anti-HBV efficacies without any sign of resistance in vitro or in vivo. As, flavonoids and alkaloids are the most widely reported antivirals, the anti-HBV activities of the flavonoid acacetin (ACT) and the alkaloid acetyl-ß-carboline (ABC) from the aerial parts of Rhazya stricta were assessed in the present study. Both compounds were isolated from the ethyl acetate fraction of the total methanol extract using column and thin-layer chromatography, and their structures were determined by nuclear magnetic resonance spectroscopy (NMR). Both compounds (at 6.25-50 µg/ml) showed a lack of hepatocytotoxicity in cultured HepG2.2.15 cells. Anti-HBV ELISA [hepatitis B surface antigen (HBsAg) and hepatitis B pre-core-antigen (HBeAg)] on HepG.2.2.15 cells following treatment with selected concentrations (12.5, 25 and 50 µg/ml) of both compounds showed dose- and time-dependent anti-HBV activities. Compared with those in the untreated control at day 5, ACT and ABC (25 µg/ml, each) maximally inhibited HBsAg synthesis by 43.4 and 48.7%, respectively, whilst also maximally inhibiting HBeAg synthesis by 41.2 and 44.2%, respectively, in HepG2.2.15 cells. Comparatively, quercetin and LAM (standards; POL inhibitors) suppressed HBsAg (63.9 and 60.2%, respectively) and HBeAg synthesis (87.1 and 84.3%, respectively) by larger magnitudes. Molecular docking of ACT and ABC structures performed in AutoDock revealed their hydrogen bonding with the drug-sensitive [wild-type (wt)-POL] 'Tyr-Met-Asp-Asp' motif, in addition to the drug-resistant [mutant (mut)-POL] 'Tyr-Ile-Asp-Asp' motif residues of the polymerase binding-pocket, along with other electrostatic interactions. In the wt-POL complex, both compounds showed good interactions with Asp205. In the mut-POL complex, ACT and ABC interacted with Tyr203-Asp205 and Tyr203-Ile204, respectively. In conclusion, to the best of our knowledge, the present study demonstrates anti-HBV efficacies of ACT and ABC in vitro for the first time, endorsed by in silico data. However, further molecular and pharmacological studies are required to validate their pre-clinical therapeutic potential.

8.
J Genet Eng Biotechnol ; 21(1): 33, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36929465

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is the cause of a liver disease hepatitis E. The translation product of HEV ORF2 has recently been demonstrated as a protein involved in multiple functions besides performing its major role of a viral capsid. As intrinsically disordered regions (IDRs) are linked to various essential roles in the virus's life cycle, we analyzed the disorder pattern distribution of the retrieved ORF2 protein sequences by employing different online predictors. Our findings might provide some clues on the disorder-based functions of ORF2 protein that possibly help us in understanding its behavior other than as a HEV capsid protein. RESULTS: The modeled three dimensional (3D) structures of ORF2 showed the predominance of random coils or unstructured regions in addition to major secondary structure components (alpha helix and beta strand). After initial scrutinization, the predictors VLXT and VSL2 predicted ORF2 as a highly disordered protein while the predictors VL3 and DISOPRED3 predicted ORF2 as a moderately disordered protein, thus categorizing HEV-ORF2 into IDP (intrinsically disordered protein) or IDPR (intrinsically disordered protein region) respectively. Thus, our initial predicted disorderness in ORF2 protein 3D structures was in excellent agreement with their predicted disorder distribution patterns (evaluated through different predictors). The abundance of MoRFs (disorder-based protein binding sites) in ORF2 was observed that signified their interaction with binding partners which might further assist in viral infection. As IDPs/IDPRs are targets of regulation, we carried out the phosphorylation analysis to reveal the presence of post-translationally modified sites. Prevalence of several disordered-based phosphorylation sites further signified the involvement of ORF2 in diverse and significant biological processes. Furthermore, ORF2 structure-associated functions revealed its involvement in several crucial functions and biological processes like binding and catalytic activities. CONCLUSIONS: The results predicted ORF2 as a protein with multiple functions besides its role as a capsid protein. Moreover, the occurrence of IDPR/IDP in ORF2 protein suggests that its disordered region might serve as novel drug targets via functioning as potential interacting domains. Our data collectively might provide significant implication in HEV vaccine search as disorderness in viral proteins is related to mechanisms involved in immune evasion.

9.
Bioinformation ; 18(2): 111-118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420436

RESUMEN

Hepatitis E virus (HEV) is the causative agent of Hepatitis E infections across the world. Intrinsically disordered protein regions (IDPRs) or intrinsically disordered proteins (IDPs) are regions or proteins that are characterized by lack of definite structure. These IDPRs or IDPs play significant roles in a wide range of biological processes, such as cell cycle regulation, control of signaling pathways, etc. IDPR/IDP in proteins is associated with the virus's pathogenicity and infectivity. The prevalence of IDPR/IDP in rat HEV proteome remains undetermined. Hence, we examined the unstructured/disordered regions of the open reading frame (ORF) encoded proteins of rat HEV by analyzing the prevalence of intrinsic disorder. The intrinsic disorder propensity analysis showed that the different ORF proteins consisted of varying fraction of intrinsic disorder. The protein ORF3 was identified with maximum propensity for intrinsic disorder while the ORF6 protein had the least fraction of intrinsic disorder. The analysis revealed ORF6 as a structured protein (ORDP); ORF1 and ORF4 as moderately disordered proteins (IDPRs); and ORF3 and ORF5 as highly disordered proteins (IDPs). The protein ORF2 was found to be moderately as well as highly disordered using different predictors, thus, was categorized into both IDPR and IDP. Such disordered regions have important roles in pathogenesis and replication of viruses.

10.
Biomed Rep ; 17(5): 89, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36185785

RESUMEN

The present study assessed the in vitro anti-hepatitis B virus (HBV) effects of cold-adapted sea buckthorn (Hippophae rhamnoides). Sea buckthorn leaf ethanol extracts subjected to chloroform (SB-Chl), ethyl acetate (SB-Eac), n-butanol (SB-But) and aqueous (SB-Aqu) fractionation were first examined (MTT assay) for their toxic effects on HepG2 cells. While SB-Chl (IC50, 32.58 µg/ml) exhibited high cytotoxicity, SB-Eac, SB-But SB-Aqu were non-toxic at up to 150 µg/ml. High performance liquid chromatography analysis led to the identification of the anti-HBV active flavonols, quercetin (93.09 µg/g), kaempferol (44.19 µg/g) and isorhamnetin (138.75 µg/g) in the extract. The analysis of the anti-HBV effects of SB-Eac, SB-But and SB-Aqu (50 µg/ml, each) on HepG2.2.15 cells revealed the marked inhibition of HBsAg and HBeAg expression levels. At the concentration of 10 µg/ml, quercetin and kaempferol exerted potent inhibitory effects on HBsAg (60.5 and 62.3%, respectively) and HBeAg synthesis (64.4 and 60.2%, respectively), as compared to isorhamnetin (30.5 and 28.4%, respectively). The HBV-polymerase inhibitor drug, lamivudine (2 µM), inhibited HBsAg and HBeAg expression by 87.4 and 83.5%, respectively. The data were in good agreement with a previous in vitro and in silico molecular docking analysis performed by the authors where quercetin, kaempferol and lamivudine had formed stable complexes with HBV-polymerase binding-pocket amino acids. On the whole, to the best of our knowledge, the present study provides the first report of the anti-HBV therapeutic potential of sea buckthorn, attributed to quercetin, kaempferol and isorhamnetin.

11.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016400

RESUMEN

Hepatitis E Virus (HEV) is a quasi-enveloped virus having a single-stranded, positive-sense RNA genome (~7.2 kb), flanked with a 5' methylated cap and a 3' polyadenylated tail. The HEV open reading frame 1 (ORF1) encodes a 186-kDa polyprotein speculated to get processed and produce Methyltransferase (MTase), one of the four essential replication enzymes. In this study, we report the identification of the MTase inhibitor, which may potentially deplete its enzymatic activity, thus causing the cessation of viral replication. Using in silico screening through docking, we identified ten putative compounds, which were tested for their anti-MTase activity. This resulted in the identification of 3-(4-Hydroxyphenyl)propionic acid (HPPA), with an IC50 value of 0.932 ± 0.15 µM, which could be perceived as an effective HEV inhibitor. Furthermore, the compound was tested for inhibition of HEV replication in the HEV culture system. The viral RNA copies were markedly decreased from ~3.2 × 106 in untreated cells to ~4.3 × 102.8 copies in 800 µM HPPA treated cells. Therefore, we propose HPPA as a potential drug-like inhibitor against HEV-MTase, which would need further validation through in vivo analysis using animal models and the administration of Pharmacokinetic and Pharmacodynamic (PK/PD) studies.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Virus de la Hepatitis E/genética , Metiltransferasas , Poliproteínas , Replicación Viral/fisiología
12.
Bioinformation ; 18(1): 19-25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815200

RESUMEN

Hepatitis E virus (HEV) is a major causative agent of acute hepatitis in developing countries. The Norway rat HEV genome consists of six open reading frames (ORFs), i.e., ORF1, ORF2, ORF3, ORF4, ORF5 and ORF6. The additional reading frame encoded protein ORF5 is attributed to life cycle of rat HEV. The ORFF5 protein's function remains undetermined. Therefore, it is of interest to analyze the ORF5 protein for its physiochemical properties, primary structure, secondary structure, tertiary structure and functional characteristics using bioinformatics tools. Analysis of the ORF5 protein revealed it as highly unstable, hydrophilic with basic pI. The ORF5 protein consisted mostly of Arg, Pro, Ser, Leu and Gly. The 3D structural homology model of the ORF5 protein generated showed mixed α/ß structural fold with predominance of coils. Structural analysis revealed the presence of clefts, pores and a tunnel. This data will help in the sequence, structure and functional annotation of ORF5.

13.
Exp Ther Med ; 23(6): 398, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35619632

RESUMEN

Bioactive natural or phytoproducts have emerged as a potential source of antiviral agents. Of the Rhus spp., R. coriaria and R. succedanea have been reported for their antiviral activities against hepatitis B virus (HBV), while the anti-HBV efficacy of R. tripartita has remained elusive. In the present study, the anti-HBV activities of R. tripartita-derived novel catechin [3,5,13,14-flavantetrol-catechin or rhuspartin (RPT)] and epicatechin-3-O-rhamnoside (ECR), were assessed using the HBV-reporter cell line HepG2.2.15. RPT and ECR proved to efficiently inhibit HBV surface antigen (HBsAg) synthesis by 68.8 and 71.3%, respectively, and HBV pre-core antigen (HBeAg) production by 62.3 and 71.2%, respectively, after 5 days of treatment. Of note, RPT had a lower anti-HBV activity than ECR. In comparison, the reference drug lamivudine (LAM) inhibited HBsAg and HBeAg expression by 83.6 and 85.4%, respectively. Further molecular docking analysis revealed formations of strong complexes of RPT, ECR and LAM with HBV polymerase through interactions with binding pocket residues. Taken together, the present results demonstrated promising therapeutic potential of the novel R. tripartita-derived catechin and epicatechin for HBV, warranting their further molecular and pharmacological evaluation.

14.
Saudi Pharm J ; 30(4): 359-368, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35527834

RESUMEN

Chronic liver disease caused by hepatitis B virus (HBV) remains an important health issue. Though there are effective HBV-polymerase inhibitors (e.g., lamivudine), their prolonged use leads to emergence of drug-resistant (polymerase mutant) strains. Several herbal formulations and phytochemicals have been therefore, reported as potential anti-HBV agents with no sign of resistance in experimental and clinical settings. In this study, we assessed the anti-HBV as well as hepatoprotective salutations of solanopubamine, a rare alkaloid isolated from S. schimperianum. In cultured HepG2.2.15 cells, solanopubamine showed marked anti-HBV activity in a time and dose-dependent manner. Solanopubamine (30 µM) efficiently inhibited HBsAg and HBeAg expressions by 66.5%, 70.5%, respectively as compared to 82.5% and 86.5% respective inhibition by lamivudine (2 µM) at day 5. Molecular docking analyses of solanopubamine revealed formations of stable complexes with lamivudine-sensitive as well as lamivudine-resistant polymerase through interactions of catalytic 'YMDD/YIDD' motif residues. Moreover, solanopubamine attenuated DCFH-induced oxidative and apoptotic damage and restored HepG2 cell viability by 28.5%, and downregulated caspase-3/7 activations by 33%. Further docking analyses of solanopubamine showed formation of stable complexes with caspase-3/7. Taken together, our data demonstrates promising anti-HBV and anti-hepatotoxic therapeutic potential of solanopubamine, and warrants further molecular and pharmacological studies.

15.
Saudi J Biol Sci ; 29(4): 3062-3068, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531192

RESUMEN

The genus Crepis constitutes cold-adapted plant spp., of these some are traditionally used in folk medicine against inflammation or fungal infections without scientific validations. Here, we report the biological activities of Crepis flexuosa total ethanol-extract (CF-EtOH) and its hexane (CF-Hex), ethyl acetate (CF-EtOA), butanol (CF-ButOH), and aqueous (CF-Aqua) fractions. Our in vitro DPPH and ABTS radical-scavenging assays showed CF-EtOH, CF-ButOH and CF-Aqua with maximal, CF-EtOA with moderate, and CF-Hex with mild anti-oxidant activities. When tested on human cancer cell lines, high cytotoxicity was demonstrated by CF-EtOH (IC50: 42.45 µg/ml) and CF-Aqua (IC50: 46.37 µg/ml) on HepG2, followed by CF-Hex (IC50: 63.24 µg/ml) and CF-ButOH (IC50: 65.32 µg/ml) on MCF7 cells. The human primary cell line (HUVEC) had comparatively lower cytotoxicity for the tested samples. Moreover, when assessed for anti-microbial efficacy, CF-ButOH and CF-Aqua exhibited the strongest activity (MIC: 156.25 µg/ml) against S. aureus, E. faecalis and C. albicans. Further, while the developed RP-HPTLC identified the bioactive flavonoid luteolin-7-O-glucoside (17.58 mg/g), GS/MS analysis revealed sixteen compounds in C. flexuosa extract. In conclusion, we for the first time show the promising anti-oxidative, anti-cell proliferative and anti-microbial efficacies of C. flexuosa. This warrants further phytochemical and bio-efficacy studies towards isolations and identifications of active principles.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35573872

RESUMEN

Background: Hepatitis E virus (HEV) is a member of the family Hepeviridae and causes acute HEV infections resulting in thousands of deaths worldwide. The zoonotic nature of HEV in addition to its tendency from human to human transmission has led scientists across the globe to work on its different aspects. HEV also accounts for about 30% mortality rates in case of pregnant women. The genome of HEV is organized into three open reading frames (ORFs): ORF1 ORF2 and ORF3. A reading frame encoded protein ORF4 has recently been discovered which is exclusive to GT 1 isolates of HEV. The ORF4 is suggested to play crucial role in pregnancy-associated pathology and enhanced replication. Though studies have documented the ORF4's importance, the genetic features of ORF4 protein genes in terms of compositional patterns have not been elucidated. As codon usage performs critical role in establishment of the host-pathogen relationship, therefore, the present study reports the codon usage analysis (based on nucleotide sequences of HEV ORF4 available in the public database) in three hosts along with the factors influencing the codon usage patterns of the protein genes of ORF4 of HEV. Results: The nucleotide composition analysis indicated that ORF4 protein genes showed overrepresentation of C nucleotide and while A nucleotide was the least-represented, with random distribution of G and T(U) nucleotides. The relative synonymous codon usage (RSCU) analysis revealed biasness toward C/G-ended codons (over U/A) in all three natural HEV-hosts (human, rat and ferret). It was observed that all the ORF4 genes were richly endowed with GC content. Further, our results showed the occurrence of both coincidence and antagonistic codon usage patterns among HEV-hosts. The findings further emphasized that both mutational and selection forces influenced the codon usage patterns of ORF4 protein genes. Conclusions: To the best of our knowledge, this is first bioinformatics study evaluating codon usage patterns in HEV ORF4 protein genes. The findings from this study are expected to increase our understanding toward significant factors involved in evolutionary changes of ORF4. Supplementary Information: The online version contains supplementary material available at 10.1186/s43088-022-00244-w.

17.
Pharmacogenomics ; 23(7): 405-413, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35469450

RESUMEN

Aim: To carry out a case-control study of the association of GST gene polymorphisms in pediatric asthma-related oxidative stress. Materials & methods: Asthma patients (n = 250) and age-matched healthy subjects (n = 250) DNA were genotyped for GSTM1/GSTT1 (+/+, +/-, -/+ and -/-) frequencies using multiplex-PCR and plasma oxidative stress markers (examined spectrophotometrically). Results: Asthma patients had significantly more common null-genotype GSTM1-/GSTT1- (10.4%; p = 0.002) and elevated levels of malondialdehyde, protein carbonyl and 8-hydroxy-2-deoxyguanosine as compared with controls. In addition, the level of plasma glutathione, GST activity and ferric-reducing ability were significantly decreased as compared with controls. Conclusion: Our data revealed significant associations between GSTM1-/GSTT1- genotype and oxidative stress markers in asthmatic children, which may very likely contribute to increased incidence of bronchial asthma.


Asunto(s)
Asma , Predisposición Genética a la Enfermedad , Glutatión Transferasa/genética , Asma/epidemiología , Asma/genética , Estudios de Casos y Controles , Niño , Genotipo , Glutatión Transferasa/metabolismo , Humanos , Polimorfismo Genético/genética , Factores de Riesgo
18.
J Genet Eng Biotechnol ; 20(1): 56, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404024

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is a positive-sense RNA virus belonging to the family Hepeviridae. The genome of HEV is organized into three open-reading frames (ORFs): ORF1, ORF2, and ORF3. The ORF1 non-structural Y-domain region (YDR) has been demonstrated to play an important role in the HEV pathogenesis. The nucleotide composition, synonymous codon usage bias in conjunction with other factors influencing the viral YDR genes of HEV have not been studied. Codon usage represents a significant mechanism in establishing the host-pathogen relationship. The present study for the first time elucidates the detailed codon usage patterns of YDR among HEV and HEV-hosts (Human, Rabbit, Mongoose, Pig, Wild boar, Camel, Monkey). RESULTS: The overall nucleotide composition revealed the abundance of C and U nucleotides in YDR genomes. The relative synonymous codon usage (RSCU) analysis indicated biasness towards C and U over A and G ended codons in HEV across all hosts. Codon frequency comparative analyses among HEV-hosts showed both similarities and discrepancies in usage of preferred codons encoding amino acids, which revealed that HEV codon preference neither completely differed nor completely showed similarity with its hosts. Thus, our results clearly indicated that the synonymous codon usage of HEV is a mixture of the two types of codon usage: coincidence and antagonism. Mutation pressure from virus and natural selection from host seems to be accountable for shaping the codon usage patterns in YDR. The study emphasised that the influence of compositional constraints, codon usage biasness, mutational alongside the selective forces were reflected in the occurrence of YDR codon usage patterns. CONCLUSIONS: Our study is the first in its kind to have reported the analysis of codon usage patterns on a total of seven different natural HEV hosts. Therefore, knowledge of preferred codons obtained from our study will not only augment our understanding towards molecular evolution but is also envisaged to provide insight into the efficient viral expression, viral adaptation, and host effects on the HEV YDR codon usage.

20.
Plants (Basel) ; 11(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336693

RESUMEN

A phytochemical investigation of the aerial parts of Euphorbia cactus Ehrenb. ex Boiss. revealed a new megastigmane, euphocactoside (5), along with eleven known metabolites. Euphocactoside (5) is the 3-O-glucoside derivative of a polyhydroxylated megastigmane showing unprecedented structural features. The structure of euphocactoside, including stereochemical details, was elucidated by extensive spectroscopic analysis based on 1D and 2D nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HR-ESIMS). The isolated compounds were evaluated for their cytotoxic activity against three different human cancer cell lines, namely, A549 (lung), LoVo (colon), and MCF-7 (breast), using MTT assay, and moderate to marginal activities were observed for compounds 1-3, 8 and 9 against all three cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...