Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Nucl Med ; 65(5): 761-767, 2024 May 01.
Article En | MEDLINE | ID: mdl-38514083

The membrane protein carbonic anhydrase IX (CAIX) is highly expressed in many hypoxic or von Hippel-Lindau tumor suppressor-mutated tumor types. Its restricted expression in healthy tissues makes CAIX an attractive diagnostic and therapeutic target. DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, allowing radionuclide chelation for theranostic purposes. Here, we report CAIX expression in multiple tumor types and provide in vitro and in vivo evaluations of 68Ga-labeled DPI-4452 ([68Ga]Ga-DPI-4452) and 177Lu-labeled DPI-4452 ([177Lu]Lu-DPI-4452). Methods: CAIX expression was assessed by immunohistochemistry with a panel of tumor and healthy tissues. The molecular interactions of complexed and uncomplexed DPI-4452 with CAIX were assessed by surface plasmon resonance and cell-binding assays. In vivo characterization of radiolabeled and nonradiolabeled DPI-4452 was performed in HT-29 colorectal cancer (CRC) and SK-RC-52 clear cell renal cell carcinoma (ccRCC) human xenograft mouse models and in healthy beagle dogs. Results: Overexpression of CAIX was shown in several tumor types, including ccRCC, CRC, and pancreatic ductal adenocarcinoma. DPI-4452 specifically and selectively bound CAIX with subnanomolar affinity. In cell-binding assays, DPI-4452 displayed comparably high affinities for human and canine CAIX but a much lower affinity for murine CAIX, demonstrating that the dog is a relevant species for biodistribution studies. DPI-4452 was rapidly eliminated from the systemic circulation of beagle dogs. The highest uptake of [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 was observed in the small intestine and stomach, 2 organs known to express CAIX. Uptake in other organs (e.g., kidneys) was remarkably low. In HT-29 and SK-RC-52 xenograft mouse models, both [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 showed tumor-selective uptake; in addition, [177Lu]Lu-DPI-4452 significantly reduced tumor growth. These results demonstrated the theranostic potential of DPI-4452. Conclusion: DPI-4452 selectively targets CAIX. [68Ga]Ga-DPI-4452 and [177Lu]Lu-DPI-4452 localized to tumors and were well tolerated in mice. [177Lu]Lu-DPI-4452 demonstrated strong tumor growth inhibition in 2 xenograft mouse models. Thus, the 2 agents potentially provide a theranostic approach for selecting and treating patients with CAIX-expressing tumors such as ccRCC, CRC, and pancreatic ductal adenocarcinoma.


Carbonic Anhydrase IX , Gallium Radioisotopes , Lutetium , Radioisotopes , Carbonic Anhydrase IX/metabolism , Humans , Animals , Mice , Radioisotopes/therapeutic use , Cell Line, Tumor , Tissue Distribution , Ligands , Antigens, Neoplasm/metabolism , Theranostic Nanomedicine , Precision Medicine , Female , Dogs
2.
Eur J Nucl Med Mol Imaging ; 50(9): 2621-2635, 2023 07.
Article En | MEDLINE | ID: mdl-37086273

PURPOSE: FAP is a membrane-bound protease under investigation as a pan-cancer target, given its high levels in tumors but limited expression in normal tissues. FAP-2286 is a radiopharmaceutical in clinical development for solid tumors that consists of two functional elements: a FAP-targeting peptide and a chelator used to attach radioisotopes. Preclinically, we evaluated the immune modulation and anti-tumor efficacy of FAP-2287, a murine surrogate for FAP-2286, conjugated to the radionuclide lutetium-177 (177Lu) as a monotherapy and in combination with a PD-1 targeting antibody. METHODS: C57BL/6 mice bearing MCA205 mouse FAP-expressing tumors (MCA205-mFAP) were treated with 177Lu-FAP-2287, anti-PD-1, or both. Tumor uptake of 177Lu- FAP-2287 was assessed by SPECT/CT scanning, while therapeutic efficacy was measured by tumor volume and survival. Immune profiling of tumor infiltrates was evaluated through flow cytometry, RNA expression, and immunohistochemistry analyses. RESULTS: 177Lu-FAP-2287 rapidly accumulated in MCA205-mFAP tumors leading to significant tumor growth inhibition (TGI) and longer survival time. Significant TGI was also observed from anti-PD-1 and the combination. In flow cytometry analysis of tumors, 177Lu-FAP-2287 increased CD8+ T cell infiltration which was maintained in the combination with anti-PD-1. The increase in CD8+ T cells was accompanied by an induction of STING-mediated type I interferon response and higher levels of co-stimulatory molecules such as CD86. CONCLUSION: In a preclinical model, FAP-targeted radiotherapy enhanced anti-PD-1-mediated TGI by modulating the TME and increasing the recruitment of tumor-infiltrating CD8+ T cells. These findings provide a rationale for clinical studies of combined 177Lu-FAP-2286 radiotherapy and immune checkpoint inhibition in FAP-positive tumors.


CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Animals , Mice , Tumor Microenvironment , Cell Line, Tumor , Mice, Inbred C57BL , Fibroblasts
3.
Eur J Nucl Med Mol Imaging ; 49(11): 3651-3667, 2022 09.
Article En | MEDLINE | ID: mdl-35608703

PURPOSE: Fibroblast activation protein (FAP) is a membrane-bound protease that has limited expression in normal adult tissues but is highly expressed in the tumor microenvironment of many solid cancers. FAP-2286 is a FAP-binding peptide coupled to a radionuclide chelator that is currently being investigated in patients as an imaging and therapeutic agent. The potency, selectivity, and efficacy of FAP-2286 were evaluated in preclinical studies. METHODS: FAP expression analysis was performed by immunohistochemistry and autoradiography on primary human cancer specimens. FAP-2286 was assessed in biochemical and cellular assays and in in vivo imaging and efficacy studies, and was further evaluated against FAPI-46, a small molecule-based FAP-targeting agent. RESULTS: Immunohistochemistry confirmed elevated levels of FAP expression in multiple tumor types including pancreatic, breast, and sarcoma, which correlated with FAP binding by FAP-2286 autoradiography. FAP-2286 and its metal complexes demonstrated high affinity to FAP recombinant protein and cell surface FAP expressed on fibroblasts. Biodistribution studies in mice showed rapid and persistent uptake of 68Ga-FAP-2286, 111In-FAP-2286, and 177Lu-FAP-2286 in FAP-positive tumors, with renal clearance and minimal uptake in normal tissues. 177Lu-FAP-2286 exhibited antitumor activity in FAP-expressing HEK293 tumors and sarcoma patient-derived xenografts, with no significant weight loss. In addition, FAP-2286 maintained longer tumor retention and suppression in comparison to FAPI-46. CONCLUSION: In preclinical models, radiolabeled FAP-2286 demonstrated high tumor uptake and retention, as well as potent efficacy in FAP-positive tumors. These results support clinical development of 68Ga-FAP-2286 for imaging and 177Lu-FAP-2286 for therapeutic use in a broad spectrum of FAP-positive tumors.


Gallium Radioisotopes , Sarcoma , Adult , Animals , Cell Line, Tumor , Fibroblasts , HEK293 Cells , Humans , Mice , Radionuclide Imaging , Tissue Distribution , Tumor Microenvironment
4.
J Med Chem ; 52(14): 4370-9, 2009 Jul 23.
Article En | MEDLINE | ID: mdl-19552431

Blockade of the bradykinin B(2) receptor provides therapeutic benefit in hereditary angioedema (HAE) and potentially in many other diseases. Herein, we describe the development of highly potent B(2) receptor antagonists with a molecular weight of approximately 500 g/mol. First, known quinoline-based B(2) receptor antagonists were stripped down to their shared core motif 53, which turned out to be the minimum pharmacophore. Targeted modifications of 53 resulted in the highly water-soluble lead compound 8a. Extensive exploration of its structure-activity relationship resulted in a series of highly potent B(2) receptor antagonists, featuring a hydrogen bond accepting functionality, which presumably interacts with the side chain of Asn-107 of the B(2) receptor. Optimization of the microsomal stability and cytochrome P450 inhibition eventually led to the discovery of the highly potent and orally available B(2) receptor antagonist 52e (JSM10292), which showed the best overall properties.


Bradykinin B2 Receptor Antagonists , Drug Design , Administration, Oral , Animals , Biological Availability , Cell Line , Female , Heterocyclic Compounds/chemistry , Humans , Molecular Weight , Quinolines/chemistry , Quinolines/metabolism , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Rats, Wistar , Receptor, Bradykinin B2/metabolism , Structure-Activity Relationship
5.
N Biotechnol ; 25(1): 49-54, 2008 Jun.
Article En | MEDLINE | ID: mdl-18504019

Antibody phage display is a key technology for the generation of recombinant (human) antibodies for research, diagnostics and therapy. Most antibody fragments can only be folded correctly in the oxidizing environment of the periplasm of Escherichia coli. A multitude of leader peptides has been used for secretion of antibody::pIII fusion proteins into the periplasm, but a systematic study of their impact on the performance of antibody phage display systems has not been reported so far. In this work we have analysed the influence of various leader peptides on antibody phage display efficiency and production yields of soluble antibody fragments. Four leader peptides using the Sec pathway (PelB, OmpA, PhoA and pIII) and three using the SRP pathway (DsbA, TorT and TolB) were compared. Both pathways are compatible with antibody phage display and the production of soluble antibody fragments. The applicability of the SRP pathway to antibody phage display and the production of functional scFvs is shown here for the first time.


Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Immunoglobulin Fragments/biosynthesis , Peptide Library , Protein Sorting Signals , Signal Recognition Particle/metabolism , Amino Acid Sequence , Animals , Antibodies/immunology , Antigens , Blotting, Western , Chickens , Enzyme-Linked Immunosorbent Assay , Genetic Vectors , Humans , Molecular Sequence Data , Solubility
6.
J Mol Recognit ; 20(5): 367-78, 2007.
Article En | MEDLINE | ID: mdl-17918771

The use of peptides as in vivo and in vitro ligand binding agents is hampered by the high flexibility, low stability and lack of intrinsic detection signal of peptide aptamers. Recent attempts to overcome these limitations included the integration of the binding peptide into a stable protein scaffold. In this paper, we present the optimization and testing of a circularly permuted variant of the green fluorescent protein (GFP). We examined the ability of the optimized scaffold to accept peptide insertions at three different regions. The three regions chosen are localized in close spatial proximity to each other and support different conformations of the inserted peptides. In all the three regions peptides with a biased, but still comprehensive, amino acid repertoire could be presented without disturbing the function of the optimized GFP-scaffold.


Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Peptides/metabolism , Protein Engineering/methods , Amino Acid Sequence , Animals , DNA/metabolism , Escherichia coli , Guanidine/pharmacology , Molecular Sequence Data , Mutagenesis , Mutation , Peptide Library , Peptides/chemistry , Protein Denaturation/drug effects , Protein Folding , Protein Structure, Tertiary , Spectrometry, Fluorescence , Thermodynamics
7.
Invest Ophthalmol Vis Sci ; 48(6): 2545-52, 2007 Jun.
Article En | MEDLINE | ID: mdl-17525183

PURPOSE: To analyze whether bevacizumab can inhibit inflammatory angiogenesis and lymphangiogenesis in the cornea. Bevacizumab (Avastin; Roche, Welwyn Garden City, UK) is a recombinant, humanized, monoclonal antibody against VEGF-A that has been approved by the U.S. Food and Drug Administration for the treatment of colon carcinomas. METHODS: The mouse model of suture-induced corneal neovascularization was used to assess the antihemangiogenic and antilymphangiogenic effect of bevacizumab by systemic and topical application. Corneal flatmounts were stained with LYVE-1 as a specific lymphatic vascular endothelial marker and CD31 as a pan-endothelial marker, and blood and lymph vascularized areas were analyzed morphometrically. The inhibitory effect of bevacizumab on lymphatic endothelial cells (LECs) was analyzed with a colorimetric (BrdU) proliferation ELISA. The binding ability of bevacizumab to murine VEGF-A was analyzed by Western blot, ELISA, and surface plasmon resonance. RESULTS: The systemic and topical applications of bevacizumab significantly inhibited the outgrowth of blood (P < 0.006 and P < 0.0001, respectively) and lymphatic (P < 0.002 and P < 0.0001, respectively) vessels. Inhibition of the proliferation of LECs was also significant (P < 0.0001). Western blot analysis, ELISA, and the surface plasmon resonance assay showed that bevacizumab binds murine VEGF-A. CONCLUSIONS: Topical or systemic application of bevacizumab inhibits both inflammation-induced angiogenesis and lymphangiogenesis in the cornea. This finding suggests an important role of VEGF-A in corneal lymphangiogenesis. Bevacizumab may be useful in preventing immune rejections after penetrating keratoplasty or tumor metastasis via lymphatic vessels.


Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Corneal Neovascularization/drug therapy , Lymphangiogenesis/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Administration, Topical , Animals , Antibodies, Monoclonal, Humanized , Bevacizumab , Blotting, Western , Bromodeoxyuridine/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme-Linked Immunosorbent Assay , Female , Glycoproteins/metabolism , Membrane Transport Proteins , Mice , Mice, Inbred BALB C , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Surface Plasmon Resonance
8.
Appl Microbiol Biotechnol ; 70(1): 2-11, 2006 Mar.
Article En | MEDLINE | ID: mdl-16365766

Screening phage display libraries of proteins and peptides has, for almost two decades, proven to be a powerful technology for selecting polypeptides with desired biological and physicochemical properties from huge molecular libraries. The scope of phage display applications continues to expand. Recent applications and technical improvements driving further developments in the field of phage display are discussed.


Peptide Library , Proteins/genetics , Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , DNA, Complementary/genetics , Gene Library
9.
Gene ; 350(1): 79-88, 2005 Apr 25.
Article En | MEDLINE | ID: mdl-15794923

The major limitation of conventional phage display is caused by its dependence on the Sec translocation pathway. All proteins displayed on filamentous phages must first be transported into the bacterial periplasm in an unfolded state via the Sec translocation machinery. Proteins that require a cytoplasmic environment and/or cytoplasmic components for folding, or that contain "stop transfer" signals, or reach their native state before they interact with the Sec proteins are not compatible with the Sec pathway. They can never be presented using conventional phage display. We have developed an alternative phage display system, termed the TPD system, which overcomes these limitations of conventional phage display by exploiting the properties of the twin-arginine translocation (Tat) pathway. The Tat pathway only exports folded proteins that have already attained their native conformation in the cytoplasm. We investigated the functional efficiency of the TPD system by displaying and panning for a mutant of the green fluorescent protein.


Bacteriophages/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Peptide Library , Amino Acid Sequence , Base Sequence , Blotting, Western , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spectrometry, Fluorescence
...