Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Alcohol ; 117: 55-63, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531501

While past studies have provided evidence linking excessive alcohol consumption to increased risk for cardiovascular diseases (CVDs) and colorectal cancer (CRC), existing data on the effects of moderate alcohol use on these conditions have produced mixed results. The purpose of this study was to investigate the effects of moderate alcohol consumption on risk factors associated with the development of CVDs and CRC in adult rats. Twenty-four, 14-month-old, non-deprived male Wistar rats were randomly assigned to either an ethanol group, which consisted of voluntary access to a 20% (v/v) ethanol solution on alternate days, or a water control group (n = 12/group) for 13 weeks. Blood samples were collected to analyze levels of albumin, glucose, adiponectin, lipids, oxidized low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (apoA1), C-reactive protein (CRP), high-mobility group box 1 protein (HMGB-1), tumor necrosis factor-alpha (TNF-α), thyroxine, thyroid-stimulating hormone, 8-oxo-2'-deoxyguanosine (8-oxo-dG), liver function enzymes, and antioxidant capacity. Colonic gene expression related to colon carcinogenesis was also assessed. Ethanol-treated rats were found to have significantly higher HDL-C and apoA1 levels compared to controls. Moderate alcohol consumption led to significantly lower CRP levels and a trend for decrease in HMGB-1, TNF-α, and 8-oxo-dG levels. In the ethanol-exposed group, colonic gene expression of superoxide dismutase was upregulated while aldehyde dehydrogenase 2 showed a trend for increase compared to the control group. These results indicate that adopting a moderate approach to alcohol consumption could potentially improve health biomarkers related to CVD and CRC by increasing HDL-C levels and antioxidant activity and reducing DNA damage and inflammatory activity.


Cardiovascular Diseases , Colorectal Neoplasms , Ethanol , Rats, Wistar , Animals , Colorectal Neoplasms/chemically induced , Male , Ethanol/toxicity , Cardiovascular Diseases/etiology , Rats , Risk Factors , Alcohol Drinking/adverse effects , Cholesterol, HDL/blood , Apolipoprotein A-I/blood , Oxidative Stress/drug effects , C-Reactive Protein/analysis , C-Reactive Protein/metabolism
2.
PLoS One ; 15(12): e0243499, 2020.
Article En | MEDLINE | ID: mdl-33326448

Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some epidemiological studies have reported that moderate alcohol consumption may not contribute additional risk or may provide a protective effect reducing colorectal cancer risk. Prior research highlights the importance of proliferation, differentiation, and apoptosis as parameters to consider when evaluating colonic cell growth and tumorigenesis. The present study investigated whether chronic low-to-moderate ethanol consumption altered these parameters of colonic cell growth and expression of related genes. Twenty-four nondeprived young adult (109 days old) and 24 nondeprived middle-aged (420 days old) Wistar rats were randomly assigned to an ethanol-exposed or a water control group (n = 12/group). The ethanol group was provided voluntary access to a 20% v/v ethanol solution on alternate days for 13 weeks. Colon tissues were collected for quantitative immunohistochemical analyses of cell proliferation, differentiation and apoptosis using Ki-67, goblet cell and TUNEL, respectively. Gene expression of cyclin D1 (Ccnd1), Cdk2, Cdk4, p21waf1/cip1 (Cdkn1a), E-cadherin (Cdh1) and p53 were determined by quantitative real-time polymerase chain reaction in colonic scraped mucosa. Ethanol treatment resulted in a lower cell proliferation index and proliferative zone, and lower Cdk2 expression in both age groups, as well as trends toward lower Ccnd1 and higher Cdkn1a expression. Cell differentiation was modestly but significantly reduced by ethanol treatment only in older animals. Overall, older rats showed decreases in apoptosis and gene expression of Cdk4, Cdh1, and p53 compared to younger rats, but there was no observed effect of ethanol exposure on these measures. These findings suggest that low-to-moderate ethanol consumption improves at least one notable parameter in colonic tumorigenesis (cell proliferation) and associated gene expression regardless of age, however, selectively decreased cell differentiation among older subjects.


Ethanol/pharmacology , Gene Expression/drug effects , Aging , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colon/cytology , Colon/metabolism , Colon/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Male , Rats , Rats, Wistar , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
...