Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458397

RESUMEN

Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) oncogenic fusion proteins are found in approximately 5% of non-small cell lung cancers. Different EML4-ALK fusion variants exist with variant 3 (V3) being associated with a significantly higher risk than other common variants, such as variant 1 (V1). Patients with V3 respond less well to targeted ALK inhibitors, have accelerated rates of metastasis, and have poorer overall survival. A pathway has been described downstream of EML4-ALK V3 that is independent of ALK catalytic activity but dependent on the NEK9 and NEK7 kinases. It has been proposed that assembly of an EML4-ALK V3-NEK9-NEK7 complex on microtubules leads to cells developing a mesenchymal-like morphology and exhibiting enhanced migration. However, downstream targets of this complex remain unknown. Here, we show that the microtubule-based kinesin, Eg5, is recruited to interphase microtubules in cells expressing EML4-ALK V3, whereas chemical inhibition of Eg5 reverses the mesenchymal morphology of cells. Furthermore, we show that depletion of NEK7 interferes with Eg5 recruitment to microtubules in cells expressing EML4-ALK V3 and cell length is reduced, but this is reversed by coexpression of a phosphomimetic mutant of Eg5, in a site, S1033, phosphorylated by NEK7. Intriguingly, we also found that expression of Eg5-S1033D led to cells expressing EML4-ALK V1 adopting a more mesenchymal-like morphology. Together, we propose that Eg5 acts as a substrate of NEK7 in cells expressing EML4-ALK V3 and Eg5 phosphorylation promotes the mesenchymal morphology typical of these cells.


Asunto(s)
Cinesinas , Quinasas Relacionadas con NIMA , Proteínas de Fusión Oncogénica , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Humanos , Fosforilación , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Mesodermo/metabolismo , Mesodermo/patología , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
2.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35884511

RESUMEN

EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.

3.
Mol Cancer Res ; 20(6): 854-866, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35656694

RESUMEN

EML4-ALK is an oncogenic fusion protein present in approximately 5% of non-small cell lung cancers (NSCLC). Alternative breakpoints in the gene encoding EML4 result in distinct variants that are linked to markedly different patient outcomes. Patients with EML4-ALK variant 3 (V3) respond poorly to ALK inhibitors and have lower survival rates compared with patients with other common variants, such as V1. Here, we use isogenic Beas-2B bronchial epithelial cell lines expressing EML4-ALK V1 or V3, as well as ALK-positive NSCLC patient cells that express V1 (H3122 cells) or V3 (H2228 cells), to show that EML4-ALK V3 but not V1 leads to hyperstabilized K-fibers in mitosis, as well as errors in chromosome congression and segregation. This is consistent with our observation that EML4-ALK V3 but not V1 localizes to spindle microtubules and that wild-type EML4 is a microtubule stabilizing protein. In addition, cells expressing EML4-ALK V3 exhibit loss of spindle assembly checkpoint control that is at least in part dependent on ALK catalytic activity. Finally, we demonstrate that cells expressing EML4-ALK V3 have increased sensitivity to microtubule poisons that interfere with mitotic spindle assembly, whereas combination treatment with paclitaxel and clinically approved ALK inhibitors leads to a synergistic response in terms of reduced survival of H2228 cells. IMPLICATIONS: This study suggests that combining the microtubule poison, paclitaxel, with targeted ALK inhibitors may provide an effective new treatment option for patients with NSCLC with tumors that express the EML4-ALK V3 oncogenic fusion.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Puntos de Control de la Fase M del Ciclo Celular , Microtúbulos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Microtúbulos/metabolismo , Proteínas de Fusión Oncogénica/genética , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...