Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Am J Respir Crit Care Med ; 199(7): 891-902, 2019 04 01.
Article En | MEDLINE | ID: mdl-30312106

RATIONALE: BMP9 (bone morphogenetic protein 9) is a circulating endothelial quiescence factor with protective effects in pulmonary arterial hypertension (PAH). Loss-of-function mutations in BMP9, its receptors, and downstream effectors have been reported in heritable PAH. OBJECTIVES: To determine how an acquired deficiency of BMP9 signaling might contribute to PAH. METHODS: Plasma levels of BMP9 and antagonist soluble endoglin were measured in group 1 PAH, group 2 and 3 pulmonary hypertension (PH), and in patients with severe liver disease without PAH. MEASUREMENTS AND MAIN RESULTS: BMP9 levels were markedly lower in portopulmonary hypertension (PoPH) versus healthy control subjects, or other etiologies of PAH or PH; distinguished PoPH from patients with liver disease without PAH; and were an independent predictor of transplant-free survival. BMP9 levels were decreased in mice with PH associated with CCl4-induced portal hypertension and liver cirrhosis, but were normal in other rodent models of PH. Administration of ALK1-Fc, a BMP9 ligand trap consisting of the activin receptor-like kinase-1 extracellular domain, exacerbated PH and pulmonary vascular remodeling in mice treated with hypoxia versus hypoxia alone. CONCLUSIONS: BMP9 is a sensitive and specific biomarker of PoPH, predicting transplant-free survival and the presence of PAH in liver disease. In rodent models, acquired deficiency of BMP9 signaling can predispose to or exacerbate PH, providing a possible mechanistic link between PoPH and heritable PAH. These findings describe a novel experimental model of severe PH that provides insight into the synergy between pulmonary vascular injury and diminished BMP9 signaling in the pathogenesis of PAH.


Bone Morphogenetic Proteins/metabolism , Hypertension, Portal/metabolism , Hypertension, Portal/physiopathology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Liver Diseases/metabolism , Liver Diseases/physiopathology , Adult , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Male , Middle Aged
2.
Am J Respir Crit Care Med ; 194(9): 1140-1151, 2016 11 01.
Article En | MEDLINE | ID: mdl-27115515

RATIONALE: Transforming growth factor-ß (TGF-ß) ligands signal via type I and type II serine-threonine kinase receptors to regulate broad transcriptional programs. Excessive TGF-ß-mediated signaling is implicated in the pathogenesis of pulmonary arterial hypertension, based in part on the ability of broad inhibition of activin-like kinase (ALK) receptors 4/5/7 recognizing TGF-ß, activin, growth and differentiation factor, and nodal ligands to attenuate experimental pulmonary hypertension (PH). These broad inhibition strategies do not delineate the specific contribution of TGF-ß versus a multitude of other ligands, and their translation is limited by cardiovascular and systemic toxicity. OBJECTIVES: We tested the impact of a soluble TGF-ß type II receptor extracellular domain expressed as an immunoglobulin-Fc fusion protein (TGFBRII-Fc), serving as a selective TGF-ß1/3 ligand trap, in several experimental PH models. METHODS: Signaling studies used cultured human pulmonary artery smooth muscle cells. PH was studied in monocrotaline-treated Sprague-Dawley rats, SU5416/hypoxia-treated Sprague-Dawley rats, and SU5416/hypoxia-treated C57BL/6 mice. PH, cardiac function, vascular remodeling, and valve structure were assessed by ultrasound, invasive hemodynamic measurements, and histomorphometry. MEASUREMENTS AND MAIN RESULTS: TGFBRII-Fc is an inhibitor of TGF-ß1 and TGF-ß3, but not TGF-ß2, signaling. In vivo treatment with TGFBRII-Fc attenuated Smad2 phosphorylation, normalized expression of plasminogen activator inhibitor-1, and mitigated PH and pulmonary vascular remodeling in monocrotaline-treated rats, SU5416/hypoxia-treated rats, and SU5416/hypoxia-treated mice. Administration of TGFBRII-Fc to monocrotaline-treated or SU5416/hypoxia-treated rats with established PH improved right ventricular systolic pressures, right ventricular function, and survival. No cardiac structural or valvular abnormalities were observed after treatment with TGFBRII-Fc. CONCLUSIONS: Our findings are consistent with a pathogenetic role of TGF-ß1/3, demonstrating the efficacy and tolerability of selective TGF-ß ligand blockade for improving hemodynamics, remodeling, and survival in multiple experimental PH models.


Hypertension, Pulmonary/drug therapy , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Disease Models, Animal , Heart/physiopathology , Hemodynamics/physiology , Hypertension, Pulmonary/physiopathology , Immunoglobulin Fc Fragments/metabolism , Ligands , Male , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Proteins , Signal Transduction/drug effects , Signal Transduction/physiology , Transforming Growth Factor beta/physiology , Vascular Remodeling/physiology
...