Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1169073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151587

RESUMEN

Background: Spore Trap is an environmental detection technology, already used in the field of allergology to monitor the presence and composition of potentially inspirable airborne micronic bioparticulate. This device is potentially suitable for environmental monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in hospital, as well as in other high-risk closed environments. The aim of the present study is to investigate the accuracy of the Spore Trap system in detecting SARS-CoV-2 in indoor bioaerosol of hospital rooms. Methods: The Spore Trap was placed in hospital rooms hosting patients with documented SARS-CoV-2 infection (n = 36) or, as a negative control, in rooms where patients with documented negativity to a Real-Time Polymerase Chain Reaction molecular test for SARS-CoV-2 were admitted (n = 10). The monitoring of the bioaerosol was carried on for 24 h. Collected samples were analyzed by real-time polymerase chain reaction. Results: The estimated sensitivity of the Spore Trap device for detecting SARS-CoV-2 in an indoor environment is 69.4% (95% C.I. 54.3-84.4%), with a specificity of 100%. Conclusion: The Spore Trap technology is effective in detecting airborne SARS-CoV-2 virus with excellent specificity and high sensitivity, when compared to previous reports. The SARS-CoV-2 pandemic scenario has suggested that indoor air quality control will be a priority in future public health management and will certainly need to include an environmental bio-investigation protocol.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Hospitales , Pandemias , Hospitalización
2.
Physiol Plant ; 174(1): e13619, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34988977

RESUMEN

Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2  s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 µmol m-2  s-1 ) rather than medium (400 µmol m-2  s-1 ) and low (100 µmol m-2  s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 µmol m-2  s-1 ) to very high light (1000 µmol m-2  s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.


Asunto(s)
Helechos , Luz , Nitrógeno , Fenoles , Hojas de la Planta
3.
Front Plant Sci ; 12: 727667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745161

RESUMEN

Azolla is a genus of floating freshwater ferns. By their high growth and N2 fixation rates, Azolla species have been exploited for centuries by populations of South-east Asia as biofertilizers in rice paddies. The use of Azolla species as a sustainable plant material for diverse applications, such as feeding, biofuel production, and bioremediation, has encountered a growing interest over the last few years. However, high levels of feed deterrent flavonoids in their fronds have discouraged the use of these ferns as a sustainable protein source for animal consumption. Additionally, information on how and to what extent environmental determinants affect the accumulation of secondary metabolites in these organisms remains poorly understood. Moving from these considerations, here, we investigated by an untargeted metabolomics approach the profiles of phenylpropanoid compounds in the fronds of Azolla filiculoides sampled under control and pigment-inducing stress conditions. In parallel, we assayed the expression of essential structural genes of the phenylpropanoid pathway by quantitative RT-PCR. This study provides novel information concerning A. filiculoides phenylpropanoid compounds and their temporal profiling in response to environmental stimuli. In particular, we show that besides the already known 3-deoxyanthocyanidins, anthocyanidins, and proanthocyanidins, this fern can accumulate additional secondary metabolites of outstanding importance, such as chemoattractants, defense compounds, and reactive oxygen species (ROS) scavengers, and crucial as dietary components for humans, such as dihydrochalcones, stilbenes, isoflavones, and phlobaphenes. The findings of this study open an opportunity for future research studies to unveil the interplay between genetic and environmental determinants underlying the elicitation of the secondary metabolites in ferns and exploit these organisms as sustainable sources of beneficial metabolites for human health.

4.
Plant Signal Behav ; 15(1): 1704517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31852340

RESUMEN

We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria/fisiología , Heterópteros/patogenicidad , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Animales , Arabidopsis/metabolismo , Arabidopsis/parasitología , Femenino , Regulación de la Expresión Génica de las Plantas/fisiología , Enfermedades de las Plantas/parasitología , Transducción de Señal/fisiología
5.
J Insect Physiol ; 120: 103994, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31830466

RESUMEN

The cabbage stink bugs of the genus Eurydema, encompassing several oligophagous species, such as Eurydema oleracea (L.), are known to be important pests of cabbage, broccoli, and other cole crops in Europe. Despite their economic importance, the knowledge regarding the role of chemical cues in host plant selection of these species is very limited. The present investigation on E. oleracea at the adult stage revealed the use of olfaction in host plant selection of this species and demonstrated with behavioural tests that E. oleracea preferred feeding on wild Eruca sativa, rather than on Brassica oleracea. Moreover, ultrastructural data revealed the antennal sensilla of E. oleracea, encompassing single walled and double walled olfactory sensilla, and electroantennographic recordings revealed their sensitivity to several host plant VOCs from E. sativa and B. oleracea. The data shown in the present research may be useful in the development of semiochemical-based strategies or trap crops for the control of this pest in the field.


Asunto(s)
Herbivoria , Heterópteros/fisiología , Olfato , Compuestos Orgánicos Volátiles/metabolismo , Animales , Antenas de Artrópodos/fisiología , Señales (Psicología) , Dieta , Femenino , Preferencias Alimentarias , Masculino
6.
Plant Signal Behav ; 14(3): e1573098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30727813

RESUMEN

We have recently reported the proteomic signature of the early (≤30 min) drought stress responses in Arabidopsis thaliana suspension cells challenged with PEG. We found an over-representation in the gene ontology categories "Ribosome" and "Oxidative stress along with an increased abundance of late embryogenesis abundant (LEA) and early response to dehydration (ERD) proteins. Since nitric oxide (NO) plays a pivotal role in plant responses to drought stress and induces LEA and DREB proteins, here we monitored the levels of NO in Arabidopsis cell suspensions and leaf disks challenged with PEG, and performed comparative analyses of the proteomics and transcriptomics data in public domain to search for a common set of early drought and NO responsive proteins. We show that under drought-stress, NO shows a biphasic time course, much like in response to ozone stress and that among the early drought and NO responsive proteins, the categories "DNA binding", "Nucleotide binding" and "Transcription regulator activity" are enriched. Taken together, present study suggests that in Arabidopsis the changing NO levels may play a critical role in early drought responsive processes and notably in the transcriptional and translational reprograming observed under drought stress.


Asunto(s)
Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Proteómica/métodos
7.
J Plant Physiol ; 232: 12-22, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30530199

RESUMEN

Adenylyl cyclases (ACs) catalyze the formation of the second messenger cAMP from ATP. Here we report the characterization of an Arabidopsis thaliana leucine-rich repeat (LRR) protein (At3g14460; AtLRRAC1) as an adenylyl cyclase. Using an AC-specific search motif supported by computational assessments of protein models we identify an AC catalytic center within the N-terminus and demonstrate that AtLRRAC1 can generate cAMP in vitro. Knock-out mutants of AtLRRAC1 have compromised immune responses to the biotrophic fungus Golovinomyces orontii and the hemibiotrophic bacteria Pseudomonas syringae, but not against the necrotrophic fungus Botrytis cinerea. These findings are consistent with a role of cAMP-dependent pathways in the defense against biotrophic and hemibiotrophic plant pathogens.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Inmunidad de la Planta/fisiología , Adenilil Ciclasas/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Botrytis , Dominio Catalítico/genética , AMP Cíclico/metabolismo , ADN de Plantas/genética , Técnicas de Silenciamiento del Gen , Espectrometría de Masas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética
8.
BMC Plant Biol ; 18(1): 39, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466943

RESUMEN

CORRECTION: Following publication of the original article [1], it came to the attention of the authors that they had omitted to acknowledge the University of Parma. The Acknowledgement section should read as follows: "The authors kindly acknowledge the University of Parma (Department of Chemistry, Life Sciences and Environmental Sustainability; formerly Department of Life Sciences/Evolutionary and Functional Biology) for the transfer of funds obtained from the Ager project: GIALLUMI DELLA VITE: TECNOLOGIE INNOVATIVE PER LA DIAGNOSI E LO STUDIO DELLE INTERAZIONI PIANTA/PATOGENO, BANDO AGER VITICOLTURA DA VINO".

9.
BMC Plant Biol ; 17(1): 118, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28693415

RESUMEN

BACKGROUND: Bois noir is an important disease of grapevine (Vitis vinifera L.), caused by phytoplasmas. An interesting, yet elusive aspect of the bois noir disease is "recovery", i.e., the spontaneous and unpredictable remission of symptoms and damage. Because conventional pest management is ineffective against bois noir, deciphering the molecular bases of recovery is beneficial. The present study aimed to understand whether salicylate- and jasmonate-defence pathways might have a role in the recovery from the bois noir disease of grapevine. RESULTS: Leaves from healthy, bois noir-diseased and bois noir-recovered plants were compared, both in the presence (late summer) and absence (late spring) of bois noir symptoms on the diseased plants. Analyses of salicylate and jasmonate contents, as well as the expression of genes involved in their biosynthesis, signalling and action, were evaluated. In symptomatic diseased plants (late summer), unlike symptomless plants (late spring), salicylate biosynthesis was increased and salicylate-responsive genes were activated. In contrast, jasmonate biosynthesis and signalling genes were up-regulated both in recovered and diseased plants at all sampling dates. The activation of salicylate signalling in symptomatic plants might have antagonised the jasmonate-mediated defence response by suppressing the expression of jasmonate-responsive genes. CONCLUSIONS: Our results suggest that grapevine reacts to phytoplasma infection through salicylate-mediated signalling, although the resultant full activation of a salicylate-mediated response is apparently ineffective in conferring resistance against bois noir disease. Activation of the salicylate signalling pathway that is associated with the presence of bois noir phytoplasma seems to antagonise the jasmonate defence response, by failing to activate or suppressing both the expression of some jasmonate responsive genes that act downstream of the jasmonate biosynthetic pathway, as well as the first events of the jasmonate signalling pathway. On the other hand, activation of the entire jasmonate signalling pathway in recovered plants suggests the potential importance of jasmonate-regulated defences in preventing bois noir phytoplasma infections and the subsequent development of bois noir disease. Thus, on one hand, recovery could be achieved and maintained over time by preventing the activation of defence genes associated with salicylate signalling, and on the other hand, by activating jasmonate signalling and other defence responses.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Interacciones Huésped-Patógeno , Oxilipinas/metabolismo , Phytoplasma/fisiología , Salicilatos/metabolismo , Vitis/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Vitis/genética , Vitis/inmunología
10.
Front Plant Sci ; 8: 959, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642773

RESUMEN

The response of broad bean (Vicia faba) plants to water stress alone and in combination with green stink bug (Nezara viridula) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H2O2) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis (A) and stomatal conductance (gs ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H2O2. However, infestation of N. viridula greatly increased both SA and H2O2 contents in leaves and roots, which suggests that endogenous SA and H2O2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.

11.
Front Plant Sci ; 6: 79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25750645

RESUMEN

We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.

12.
FEBS Lett ; 588(6): 1008-15, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24530500

RESUMEN

Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K(+)-efflux and Ca(2+)-influx in Arabidopsis roots. Pre-treatment with either 10µM cAMP or cGMP for 1 or 24h does significantly reduce net K(+)-leakage and Ca(2+)-influx, and in the case of the K(+)-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10µM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , AMP Cíclico/fisiología , GMP Cíclico/fisiología , Peróxido de Hidrógeno/farmacología , Raíces de Plantas/metabolismo , Potasio/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteoma/genética , Proteoma/metabolismo
13.
J Proteomics ; 83: 47-59, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23517717

RESUMEN

The second messenger 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 ß. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. BIOLOGICAL SIGNIFICANCE: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , AMP Cíclico/metabolismo , Calor , Luz , Sistemas de Mensajero Secundario/fisiología , Estrés Fisiológico/fisiología
14.
J Plant Physiol ; 168(15): 1784-94, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21742407

RESUMEN

In plants, the cysteine-rich repeat kinases (CRKs) are a sub-family of receptor-like protein kinases that contain the DUF26 motif in their extracellular domains. It has been shown that in Arabidopsis thaliana, CRK20 is transcriptionally induced by pathogens, salicylic acid and ozone (O(3)). However, its role in responses to biotic and abiotic stress remains to be elucidated. To determine the function of CRK20 in such responses, two CRK20 loss-of-function mutants, crk20-1 and crk20-2, were isolated from public collections of Arabidopsis T-DNA tagged lines and examined for responses to O(3) and Pseudomonas syringae pv. tomato (Pst) DC3000. crk20-1 and crk20-2 showed similar O(3) sensitivities and no differences in the expression of defense genes when compared with the wild-type. However, pathogen growth was significantly reduced, while there were no differences in the induction of salicylic acid related defense genes or salicylic acid accumulation. Furthermore, correlation analysis of CRK20 gene expression suggests that it has a role in the control of H(2)O and/or nutrient transport. We therefore propose that CRK20 promotes conditions that are favorable for Pst DC3000 growth in Arabidopsis, possibly through the regulation of apoplastic homeostasis, and consequently, of the environment of this biotrophic pathogen.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Quinasas/genética , Pseudomonas syringae/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutagénesis Insercional , Ozono/farmacología , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Estrés Fisiológico
15.
Environ Pollut ; 159(10): 2823-30, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21605929

RESUMEN

Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ambrosia/efectos de los fármacos , NADPH Oxidasas/metabolismo , Ozono/toxicidad , Polen/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Ambrosia/enzimología , Ambrosia/metabolismo , Óxido Nítrico/metabolismo , Ozono/análisis , Polen/enzimología , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Sex Plant Reprod ; 22(3): 109-19, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20033432

RESUMEN

In olive (Olea europaea L.), the formation of functionally staminate flowers rather than fully functional hermaphrodites is one of the major factors limiting fruit set, as flowers with aborted pistils are incapable of producing fruit. Studies conducted on various angiosperm species have shown a correlation between flower abortion and starch content. Thus, it is important to know if starch content plays a role in regulating pistil development in olive and if so, what mechanism regulates starch distribution. Cyto-histological observations of staminate and hermaphrodite olive flowers show that pistil development in staminate flowers is interrupted after the differentiation of the megaspore mother cell. At that stage, starch grains were only detected in the ovary, style and stigma of the hermaphrodite flowers. No starch was observed in the pistils of the staminate flowers. This finding suggests a tight correlation between starch content and pistil development. The secondary origin of starch within the flower is indicated by low chlorophyll content in the gynoecium, undetectable Rubisco activity in the pistils of these two kinds of flowers and by the ultrastructure of the plastids observed by transmission electron microscope analysis. The plastids have few thylakoid membranes and grana and in the staminate flowers appeared very similar to proplastids. Considering differences in starch content between staminate and hermaphrodite flowers and the secondary origin of the starch, differences in pistil development in the staminate and hermaphrodite flowers could be related to differences in the sink strength of these two types of flowers.


Asunto(s)
Flores/crecimiento & desarrollo , Olea/crecimiento & desarrollo , Almidón/metabolismo , Clorofila/metabolismo , Flores/anatomía & histología , Flores/citología , Flores/metabolismo , Olea/anatomía & histología , Olea/citología , Olea/metabolismo
18.
New Phytol ; 181(4): 860-870, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19140946

RESUMEN

Here, we analyse the temporal signatures of ozone (O3)-induced hydrogen peroxide(H2O2) and nitric oxide (NO) and the role of the second messenger guanosine3',5'-cyclic monophosphate (cGMP) in transcriptional changes of genes diagnostic for biotic and abiotic stress responses. Within 90 min O3 induced H2O2 and NO peaks and we demonstrate that NO donors cause rapid H2O2 accumulation in tobacco (Nicotiana tabacum) leaf. Ozone also causes highly significant, late (> 2 h) and sustained cGMP increases, suggesting that the second messenger may not be required in all early (< 2 h) responses to O3,but is essential and sufficient for the induction of some O3-dependent pathways.This hypothesis was tested resolving the time course of O3-induced transcript accumulation of alternative oxidase (AOX1a), glutathione peroxidase (GPX),aminocyclopropancarboxylic acid synthase (ACS2) that is critical for the synthesis of ethylene, phenylalanine ammonia lyase (PALa) and the pathogenesis-related protein PR1a.The data show that early O3 and NO caused transcriptional activation of the scavenger encoding proteins AOX1a, GPX and the induction of ethylene production through ACS2 are cGMP independent. By contrast, the early response of PALa and the late response of PR1a show critical dependence on cGMP.


Asunto(s)
GMP Cíclico/metabolismo , Nicotiana/efectos de los fármacos , Óxido Nítrico/metabolismo , Ozono/farmacología , Proteínas de Plantas/genética , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
Plant Physiol Biochem ; 47(1): 42-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18990582

RESUMEN

Artificial nitric oxide (NO) donors are widely used as tools to study the role of NO in plants. However, reliable and reproducible characterisation of metabolic responses induced by different NO donors is complicated by the variability of their NO release characteristics. The latter are affected by different physical and biological factors including temperature and light. Here we critically evaluate NO release characteristics of the donors sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO) and nitric oxide synthase (NOS), both in vitro and in planta (Nicotiana tabacum L. cv. BelW3) and assess their effects on NO dependent processes such as the transcriptional regulation of the mitochondrial alternative oxidase gene (AOX1a), accumulation of H(2)O(2) and induction of cell death. We demonstrate that, contrary to NOS and SNP, GSNO is not an efficient NO generator in leaf tissue. Furthermore, spectrophotometric measurement of NO with a haemoglobin assay, rather than diaminofluorescein (DAF-FM) based detection, is best suited for the quantification of tissue NO. In spite of the different NO release signatures by SNP and NOS in tissue, the NO dependent responses examined were similar, suggesting that there is a critical threshold for the NO response.


Asunto(s)
Nicotiana/metabolismo , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Muerte Celular/fisiología , Fluorometría , Peróxido de Hidrógeno/metabolismo , Proteínas Mitocondriales , Óxido Nítrico/genética , Óxido Nítrico Sintasa/metabolismo , Nitroprusiato/metabolismo , Oxidantes/metabolismo , Oxidorreductasas/metabolismo , Células Vegetales , Hojas de la Planta/metabolismo , Proteínas de Plantas , Plantas/metabolismo , S-Nitrosoglutatión/metabolismo , Espectrofotometría
20.
Plant Signal Behav ; 3(1): 36-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19704720

RESUMEN

We have recently reported that ozone (O(3)) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O(3) causes mitochondrial H(2)O(2), early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O(3). AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3', 5'-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O(3) and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA