Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 129: 103937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796120

RESUMEN

Experimental models of multiple sclerosis (MS) have significantly contributed to our understanding of pathophysiology and the development of therapeutic interventions. Various in vivo animal models have successfully replicated key features of MS and associated pathophysiological processes, shedding light on the sequence of events leading to disease initiation, progression, and resolution. Nevertheless, these models often entail substantial costs and prolonged treatment periods. In contrast, in vitro models offer distinct advantages, including cost-effectiveness and precise control over experimental conditions, thereby facilitating more reproducible results. We have developed a novel in vitro model tailored to the study of oligodendroglial maturation and myelin deposition under demyelinating and remyelinating conditions, which encompasses all the cell types present in the central nervous system (CNS). Of note, our model enables the evaluation of microglial cell commitment through a protocol involving their depletion and subsequent repopulation. Given that the development and survival of microglia are critically reliant on colony-stimulating factor-1 receptor (CSF-1R) signaling, we have employed CSF-1R inhibition to effectively deplete microglia. This versatile model holds promise for the assessment of potential therapies aimed at promoting oligodendroglial differentiation to safeguard and repair myelin, hence mitigate neurodegenerative processes.


Asunto(s)
Microglía , Vaina de Mielina , Oligodendroglía , Remielinización , Microglía/metabolismo , Animales , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Ratones , Remielinización/fisiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Diferenciación Celular/fisiología , Células Cultivadas
2.
Neural Regen Res ; 18(2): 267-272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900401

RESUMEN

Multiple sclerosis is a chronic central nervous system demyelinating disease whose onset and progression are driven by a combination of immune dysregulation, genetic predisposition, and environmental factors. The activation of microglia and astrocytes is a key player in multiple sclerosis immunopathology, playing specific roles associated with anatomical location and phase of the disease and controlling demyelination and neurodegeneration. Even though reactive microglia can damage tissue and heighten deleterious effects and neurodegeneration, activated microglia also perform neuroprotective functions such as debris phagocytosis and growth factor secretion. Astrocytes can be activated into pro-inflammatory phenotype A1 through a mechanism mediated by activated neuroinflammatory microglia, which could also mediate neurodegeneration. This A1 phenotype inhibits oligodendrocyte proliferation and differentiation and is toxic to both oligodendrocytes and neurons. However, astroglial activation into phenotype A2 may also take place in response to neurodegeneration and as a protective mechanism. A variety of animal models mimicking specific multiple sclerosis features and the associated pathophysiological processes have helped establish the cascades of events that lead to the initiation, progression, and resolution of the disease. The colony-stimulating factor-1 receptor is expressed by myeloid lineage cells such as peripheral monocytes and macrophages and central nervous system microglia. Importantly, as microglia development and survival critically rely on colony-stimulating factor-1 receptor signaling, colony-stimulating factor-1 receptor inhibition can almost completely eliminate microglia from the brain. In this context, the present review discusses the impact of microglial depletion through colony-stimulating factor-1 receptor inhibition on demyelination, neurodegeneration, astroglial activation, and behavior in different multiple sclerosis models, highlighting the diversity of microglial effects on the progression of demyelinating diseases and the strengths and weaknesses of microglial modulation in therapy design.

4.
Mol Neurobiol ; 57(2): 976-987, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654317

RESUMEN

Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing ß-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and ß-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Galectina 3/farmacología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Animales , Citoesqueleto/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Neural Regen Res ; 14(8): 1380-1382, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30964061
6.
Glia ; 67(2): 291-308, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30456797

RESUMEN

Multiple sclerosis (MS) is one of the most common causes of progressive disability affecting young people with very few therapeutic options available for its progressive forms. Its pathophysiology involves demyelination and neurodegeneration apparently driven by microglial activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In the present work, we used microglial modulation through oral administration of brain-penetrant CSF-1R inhibitor BLZ945 in acute and chronic cuprizone (CPZ)-induced demyelination to evaluate preventive and therapeutic effects on de/remyelination and neurodegeneration. Our results show that BLZ945 induced a significant reduction in the number of microglia. Preventive BLZ945 treatment attenuated demyelination in the acute CPZ model, mainly in cortex and external capsule. In contrast, BLZ945 treatment in the acute CPZ model failed to protect myelin or foster remyelination in myelin-rich areas, which may respond to a loss in microglial phagocytic capacity and the consequent impairment in oligodendroglial differentiation. Preventive and therapeutic BLZ945 treatment promoted remyelination and neuroprotection in the chronic model. These results could be potentially transferred to the treatment of progressive forms of MS.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/antagonistas & inhibidores , Receptores del Factor Estimulante de Colonias/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Benzotiazoles/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/ultraestructura , Bromodesoxiuridina/metabolismo , Cuprizona/toxicidad , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Microglía/ultraestructura , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácidos Picolínicos/uso terapéutico , Receptores del Factor Estimulante de Colonias/genética , Factores de Tiempo
7.
Mol Neurobiol ; 56(1): 336-349, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29704198

RESUMEN

Galectin-3 (Gal-3) is a chimeric protein structurally composed of unusual tandem repeats of proline and short glycine-rich segments fused onto a carbohydrate recognition domain. Our studies have previously demonstrated that Gal-3 drives oligodendrocyte (OLG) differentiation to control myelin integrity and function. The cytoskeleton plays a key role in OLG maturation: the initial stage of OLG process extension requires dynamic actin filament assembly, while subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins which are dependent on myelin basic protein (MPB) expression. In this context, the aim of the present work was to elucidate the mechanism by which recombinant Gal-3 (rGal-3) induces OLG maturation, giving special attention to the actin cytoskeleton. Our results show that rGal-3 induced early actin filament assembly accompanied by Erk signaling deactivation, which led to a decrease in the number of platelet-derived growth factor receptor α (PDGFRα)+ cells concomitantly with an increase in the number of 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)+ cells at 1 day of treatment (TD1), and Akt signaling activation at TD1 and TD3. Strikingly, rGal-3 induced an accelerated shift from polymerized to depolymerized actin between TD3 and TD5, accompanied by a significant increase in MBP, gelsolin, Rac1, Rac1-GTP, and ß-catenin expression at TD5. These results were strongly supported by assays using Erk 1/2 and Akt inhibitors, indicating that both pathways are key to rGal-3-mediated effects. Erk 1/2 inhibition in control-treated cells resembled an rGal-3 like state characterized by an increase in MBP, ß-catenin, and gelsolin expression. In contrast, Akt inhibition in rGal-3-treated cells reduced MBP, ß-catenin, and gelsolin expression, indicating a blockade of rGal-3 effects. Taken together, these results indicate that rGal-3 accelerates OLG maturation by modulating signaling pathways and protein expression which lead to changes in actin cytoskeleton dynamics.


Asunto(s)
Diferenciación Celular , Citoesqueleto/metabolismo , Espacio Extracelular/metabolismo , Galectina 3/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Transducción de Señal , Animales , Bovinos , Diferenciación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gelsolina/metabolismo , Humanos , Modelos Biológicos , Proteína Básica de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
8.
Front Cell Neurosci ; 12: 297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258354

RESUMEN

Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3- / - mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA