Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 23(1): 15-29, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25897982

RESUMEN

AIMS: Vorinostat (suberoylanilide hydroxamic acid; SAHA) is a histone deacetylase inhibitor (HDACi) approved in the clinics for the treatment of T-cell lymphoma and with the potential to be effective also in breast cancer. We investigated the responsiveness to SAHA in human breast primary tumors and cancer cell lines. RESULTS: We observed a differential response to drug treatment in both human breast primary tumors and cancer cell lines. Gene expression analysis of the breast cancer cell lines revealed that genes involved in cell adhesion and redox pathways, especially glutathione metabolism, were differentially expressed in the cell lines resistant to SAHA compared with the sensitive ones, indicating their possible association with drug resistance mechanisms. Notably, such an association was also observed in breast primary tumors. Indeed, addition of buthionine sulfoximine (BSO), a compound capable of depleting cellular glutathione, significantly enhanced the cytotoxicity of SAHA in both breast cancer cell lines and primary breast tumors. INNOVATION: We identify and validate transcriptional differences in genes involved in redox pathways, which include potential predictive markers of sensitivity to SAHA. CONCLUSION: In breast cancer, it could be relevant to evaluate the expression of antioxidant genes that may favor tumor resistance as a factor to consider for potential clinical application and treatment with epigenetic drugs (HDACis).


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Antineoplásicos/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/toxicidad , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , Vorinostat
2.
J Autoimmun ; 37(4): 300-10, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21962567

RESUMEN

Lymphnode swelling during immune responses is a transient, finely regulated tissue rearrangement, accomplished with the participation of the extracellular matrix. Here we show that murine and human reactive lymph nodes express SPARC in the germinal centres. Defective follicular dendritic cell networking in SPARC-deficient mice is accompanied by a severe delay in the arrangement of germinal centres and development of humoral autoimmunity, events that are linked to Th17 development. SPARC is required for the optimal and rapid differentiation of Th17 cells, accordingly we show delayed development of experimental autoimmune encephalomyelitis whose pathogenesis involves Th17. Not only host radioresistant cells, namely follicular dendritic cells, but also CD4(+) cells are the relevant sources of SPARC, in vivo. Th17 differentiation and germinal centre formation mutually depend on SPARC for a proper functional crosstalk. Indeed, Th17 cells can enter the germinal centres in SPARC-competent, but not SPARC-deficient, mice. In summary, SPARC optimizes the changes occurring in lymphoid extracellular matrix harboring complex interactions between follicular dendritic cells, B cells and Th17 cells.


Asunto(s)
Linfocitos B/metabolismo , Células Dendríticas Foliculares/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Matriz Extracelular/metabolismo , Esclerosis Múltiple/inmunología , Osteonectina/metabolismo , Células Th17/metabolismo , Animales , Animales Modificados Genéticamente , Linfocitos B/inmunología , Linfocitos B/patología , Comunicación Celular/genética , Diferenciación Celular/genética , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Humanos , Inmunidad Humoral/genética , Inmunización , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/administración & dosificación , Glicoproteína Mielina-Oligodendrócito , Osteonectina/genética , Osteonectina/inmunología , Células Th17/inmunología , Células Th17/patología
3.
Mol Cell Biol ; 27(13): 4784-95, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17470557

RESUMEN

Posttranslational modifications of core histones are central to the regulation of gene expression. Histone deacetylases (HDACs) repress transcription by deacetylating histones, and class I HDACs have a crucial role in mouse, Xenopus laevis, zebra fish, and Caenorhabditis elegans development. The role of individual class I HDACs in tumor cell proliferation was investigated using RNA interference-mediated protein knockdown. We show here that in the absence of HDAC1 cells can arrest either at the G(1) phase of the cell cycle or at the G(2)/M transition, resulting in the loss of mitotic cells, cell growth inhibition, and an increase in the percentage of apoptotic cells. On the contrary, HDAC2 knockdown showed no effect on cell proliferation unless we concurrently knocked down HDAC1. Using gene expression profiling analysis, we found that inactivation of HDAC1 affected the transcription of specific target genes involved in proliferation and apoptosis. Furthermore, HDAC2 downregulation did not cause significant changes compared to control cells, while inactivation of HDAC1, HDAC1 plus HDAC2, or HDAC3 resulted in more distinct clusters. Loss of these HDACs might impair cell cycle progression by affecting not only the transcription of specific target genes but also other biological processes. Our data support the idea that a drug targeting specific HDACs could be highly beneficial in the treatment of cancer.


Asunto(s)
Histona Desacetilasas/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Acetilación , Muerte Celular , División Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Análisis por Conglomerados , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Fase G1 , Fase G2 , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Histona Desacetilasas/deficiencia , Histonas/metabolismo , Humanos , Neoplasias/genética , Fosforilación , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo
4.
J Biol Chem ; 282(21): 15376-82, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17392274

RESUMEN

SUMO-1 (small ubiquitin-related modifier-1) is a ubiquitin-like family member that is conjugated to its substrates through three discrete enzymatic steps, activation (involving the E1 enzyme (SAE1/SAE2)), conjugation (involving the E2 enzyme), and substrate modification (through the cooperation of the E2 and E3 protein ligases). The adenoviral protein Gam1 inactivates E1, both in vitro and in vivo, followed by SAE1/SAE2 degradation. We have shown here that Gam1 possesses a C-terminal SOCS domain that allows its interaction with two cellular cullin RING (really interesting new gene) ubiquitin ligases. We demonstrate that Gam1 is necessary for the recruitment of SAE1/SAE2 into Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and for subsequent SAE1 ubiquitylation and degradation. The degradation of SAE2 is not tightly related to Gam1 but is a consequent effect of SAE1 disappearance. These results reveal the mechanism by which a viral protein inactivates and subsequently degrades an essential cellular enzyme, arresting a key regulatory pathway.


Asunto(s)
Adenovirus A Aviar/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HeLa , Humanos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Estructura Terciaria de Proteína/genética , Proteína SUMO-1/genética , Enzimas Activadoras de Ubiquitina/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA