Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
An Acad Bras Cienc ; 96(3): e20230387, 2024.
Article En | MEDLINE | ID: mdl-38865508

The blend of butadiene and acrylonitrile copolymer (NBR) with natural poly-cis-isoprene (NR) shows increased resistance to swelling in solvents in comparison to the individual components. In aerospace, NBR rubber is used as thermal protection for rockets and shall not contain other polymers, even in low contents, otherwise, it can affect the protection performance and rocket safety by causing detachment of the elastomer/propellant interface; therefore, this investigation presents methodologies to determine the NR/NBR contents. This study explores different analytical techniques, such as Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy, in the mid-infrared (MIR) by reflection and in the near-infrared by reflectance (NIRA) modes, Furthermore, quantification strategies by univariate, bivariate and multivariate (chemometric) models are evaluated and compared. A proposed methodology, based on multivariate Raman microscopy with partial least squares regression (PLS), showed high linearity (R2 > 0.99) and low error (< 0.82 %). The validation of FT-MIR data for the CH3, which presented lower error (1.3%) than vinylidene band (6%), showed that both methodologies (reflection and NIRA reflectance) can be used for the quantification of NR in NR/NBR. These results constitute a contribution to the state of the art in researching industrial and aerospace elastomeric applications.


Rubber , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Rubber/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Butadienes/chemistry , Butadienes/analysis
2.
An Acad Bras Cienc ; 94(3): e20210545, 2022.
Article En | MEDLINE | ID: mdl-36259823

Silica is a versatile material employed in different applications fields including aerospace, especially for rocket engines thermal protections. It is known that particles diameter causes variations in the material properties, and the best-known methods for diameter determination in general consist of several steps in sample preparation such as drying, sieving and the determination of the refractive index according different methods. On the other hand, Fourier transform infrared spectroscopy techniques (FT-IR), in reflectance mode, related to the particle size, are less used for this type of determination. Moreover, methodologies in the near infrared region (NIR) are even less explored. Therefore, the aim of this paper is to present a FTIR methodology for diffuse reflectance (DRIFT) in the middle infrared region (MIR) and reflectance analysis in near infrared region (NIRA) for the determination of the particle diameter on silica samples. Both methodologies showed good results. As proven by a test sample analysis, NIRA methodology indicated better precision. Furthermore, considering small and intermediated particle sizes, a tendency towards smaller errors for the absorbance measurements of the samples was found, consistently with the available literature results.


Silicon Dioxide , Spectroscopy, Fourier Transform Infrared/methods , Particle Size
3.
Braz Oral Res ; 32: e25, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29561951

The objective of this study was to evaluate the in vitro effects, including surface morphological characteristics and chemical elemental properties, of different mouthwash formulations on enamel and dental restorative materials, simulating up to 6 months of daily use. Human enamel samples, hydroxyapatite, composite resin, and ceramic surfaces were exposed to 3 different mouthwashes according to label directions - Listerine® Cool Mint®, Listerine® Total Care, and Listerine® Whitening - versus control (hydroalcohol solution) to simulate daily use for up to 6 months. The samples were analyzed using scanning electron microscopy (SEM), infrared spectrophotometry (µ-Fourier transform infrared microscopy), energy-dispersive X-ray (EDX) spectroscopy, and color analysis before and after exposure. No relevant changes were observed in the morphological characteristics of the surfaces using SEM techniques. The physical and chemical aspects of the enamel surfaces were evaluated using mid-infrared spectroscopy, and EDX fluorescence was used to evaluate the elemental aspects of each surface. There was no variation in the relative concentrations of calcium and phosphorus in enamel, silicon and barium in composite resin, and silicon and aluminum in the ceramic material before and after treatment. No relevant changes were detected in the biochemical and color properties of any specimen, except with Listerine® Whitening mouthwash, which demonstrated a whitening effect on enamel surfaces. Long-term exposure to low pH, alcohol-containing, and peroxide-containing mouthwash formulations caused no ultra-structural or chemical elemental changes in human enamel or dental restorative materials in vitro.


Ceramics , Composite Resins , Dental Enamel/drug effects , Durapatite , Ethanol/chemistry , Ethanol/pharmacology , Mouthwashes/chemistry , Mouthwashes/pharmacology , Salicylates , Terpenes , Color , Colorimetry , Drug Combinations , Humans , Hydrogen Peroxide/chemistry , Immersion , Materials Testing , Microscopy, Electron, Scanning , Oils, Volatile/chemistry , Reference Values , Reproducibility of Results , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Surface Properties/drug effects , Time Factors
4.
Braz. oral res. (Online) ; 32: e25, 2018. tab, graf
Article En | LILACS | ID: biblio-889489

Abstract The objective of this study was to evaluate the in vitro effects, including surface morphological characteristics and chemical elemental properties, of different mouthwash formulations on enamel and dental restorative materials, simulating up to 6 months of daily use. Human enamel samples, hydroxyapatite, composite resin, and ceramic surfaces were exposed to 3 different mouthwashes according to label directions — Listerine® Cool Mint®, Listerine® Total Care, and Listerine® Whitening — versus control (hydroalcohol solution) to simulate daily use for up to 6 months. The samples were analyzed using scanning electron microscopy (SEM), infrared spectrophotometry (µ-Fourier transform infrared microscopy), energy-dispersive X-ray (EDX) spectroscopy, and color analysis before and after exposure. No relevant changes were observed in the morphological characteristics of the surfaces using SEM techniques. The physical and chemical aspects of the enamel surfaces were evaluated using mid-infrared spectroscopy, and EDX fluorescence was used to evaluate the elemental aspects of each surface. There was no variation in the relative concentrations of calcium and phosphorus in enamel, silicon and barium in composite resin, and silicon and aluminum in the ceramic material before and after treatment. No relevant changes were detected in the biochemical and color properties of any specimen, except with Listerine® Whitening mouthwash, which demonstrated a whitening effect on enamel surfaces. Long-term exposure to low pH, alcohol-containing, and peroxide-containing mouthwash formulations caused no ultra-structural or chemical elemental changes in human enamel or dental restorative materials in vitro.


Humans , Ceramics , Composite Resins , Dental Enamel/drug effects , Durapatite , Ethanol/chemistry , Ethanol/pharmacology , Mouthwashes/chemistry , Mouthwashes/pharmacology , Salicylates , Terpenes , Color , Colorimetry , Drug Combinations , Hydrogen Peroxide/chemistry , Immersion , Materials Testing , Microscopy, Electron, Scanning , Oils, Volatile/chemistry , Reference Values , Reproducibility of Results , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Surface Properties/drug effects , Time Factors
5.
Analyst ; 134(8): 1652-7, 2009 Aug.
Article En | MEDLINE | ID: mdl-20448934

High performance thin layer chromatography (HPTLC) combined with on-spot detection and characterization via easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is applied to the analysis of biodiesel (B100) and biodiesel-petrodiesel blends (BX). HPTLC provides chromatographic resolution of major components whereas EASI-MS allows on-spot characterization performed directly on the HPTLC surface at ambient conditions. Constituents (M) are detected by EASI-MS in a one component-one ion fashion as either [M + Na](+) or [M + H](+). For both B100 and BX samples, typical profiles of fatty acid methyl esters (FAME) detected as [FAME + Na](+) ions allow biodiesel typification. The spectrum of the petrodiesel spot displays a homologous series of protonated alkyl pyridines which are characteristic for petrofuels (natural markers). The spectrum for residual or admixture oil spots is characterized by sodiated triglycerides [TAG + Na](+). The application of HPTLC to analyze B100 and BX samples and its combination with EASI-MS for on-spot characterization and quality control is demonstrated.


Biofuels/analysis , Chromatography, Thin Layer/methods , Mass Spectrometry/methods , Bioelectric Energy Sources/classification , Chromatography, High Pressure Liquid , Mass Spectrometry/instrumentation , Pharmaceutical Preparations/analysis , Spectrometry, Mass, Electrospray Ionization
...