Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(51): 18776-18782, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38086534

RESUMEN

Shortening the laser pulse length opens up new opportunities for laser desorption (LD) of molecules, with benefits for mass spectrometry (MS) sampling and ionization. The capability to ablate any material without the need for an absorbing matrix and the decrease of thermal damage and molecular fragmentation has promoted various applications with very different parameters and postionization techniques. However, the key issues of the optimum laser pulse length and intensity to achieve efficient and gentle desorption of molecules for postionization in MS are not resolved, although these parameters determine the costs and complexity of the required laser system. Here, we address this research gap with a systematic study on the effect of the pulse length on the LD of molecules. Keeping all other optical and ionization parameters constant, we directly compared the pulses in the femtosecond, picosecond, and nanosecond range with respect to LD-induced fragmentation and desorption efficiency. To represent real-world applications, we investigated the LD of over-the-counter medicaments naproxen and ibuprofen directly from tablets as well as the LD of retene and ship emission aerosols from a quartz filter. With our study design, we excluded interfering effects on fragmentation and LD efficiency from, for example, collisional cooling or postionization by performing the experiments in vacuum with resonance-enhanced multiphoton ionization as the postionization technique. Regarding LD-induced fragmentation, we already found benefits for the picosecond pulses. However, the efficiency of LD was found to continuously increase with decreasing pulse length, pointing to the application potential of ultrashort pulses in trace analytics. Because many interfering effects beyond the LD pulse length could be excluded in the experiment, our results may be directly transferable to the LD applied in other techniques.

2.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539833

RESUMEN

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Daño del ADN , Exposición por Inhalación/efectos adversos , Picea/química , Pinus/química , Humo/efectos adversos , Madera , Células A549 , Aerosoles , Contaminantes Atmosféricos/análisis , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Calefacción , Humanos , Exposición por Inhalación/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tamaño de la Partícula , Células RAW 264.7 , Humo/análisis , Especificidad de la Especie , Transcriptoma/efectos de los fármacos
3.
Anal Chem ; 91(15): 10282-10288, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31251028

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic trace components in atmospheric aerosols that have impacts on climate and human health. They are bound to airborne particles and transported over long distances. Observations of their distribution, transport pathways, and degradation are crucial for risk assessment and mitigation. Such estimates would benefit from online detection of PAHs along with analysis of the carrying particles to identify the source. Typically, laser desorption/ionization (LDI) in a bipolar mass spectrometer reveals the inorganic constituents and provides limited molecular information. In contrast, two-step ionization approaches produce detailed PAH mass spectra from individual particles but without the source-specific inorganic composition. Here we report a new technique that yields the single-particle PAH composition along with both positive and negative inorganic ions via LDI. Thus, the complete particle characterization and source apportionment from conventional bipolar LDI-analysis becomes possible, combined with a detailed PAH spectrum for the same particle. The key idea of the method is spatiotemporal matching of the ionization laser pulse to the transient component distribution in the particle plume after laser desorption. The technique is robust and field-deployable with only slightly higher costs and complexity compared to two-step approaches. We demonstrate its capability to reveal the PAH-distribution on different particle types in combustion aerosols and ambient air.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Compuestos Inorgánicos/análisis , Rayos Láser , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Humanos
4.
Nat Commun ; 9(1): 629, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416048

RESUMEN

The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article.

5.
Nat Commun ; 8(1): 1181, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29081493

RESUMEN

In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.

6.
Anal Chem ; 89(20): 10917-10923, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28960066

RESUMEN

Direct infusion resonance-enhanced multiphoton ionization (DI-REMPI) was performed on liquid samples, which were introduced to the ion source via a direct liquid interface, to enable the investigation of dissolved aromatic compounds. Desolvation and nebulization of the samples were supported by a heated repeller using flow rates in the upper nL min-1 range. The obtained mass spectra of five pure polycyclic aromatic hydrocarbons as well as complex petroleum samples revealed predominantly molecular ions without evidence of solvent or dopant effects as observed in atmospheric pressure photoionization (APPI) and laser ionization (APLI) with limits of detection in the lower pmol range. Furthermore, it is demonstrated by the analysis of different complex oil samples that DI-REMPI covers a larger m/z range than external volatilization of the sample prior to introduction to the ion source by using thermogravimetry (TG) hyphenated to REMPI time-of-flight mass spectrometry (TOFMS). Analogous to reported setups with direct liquid interface and electron ionization, direct-REMPI may be an option for soft ionization in liquid chromatography.

7.
Anal Chem ; 89(12): 6341-6345, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28570048

RESUMEN

Online studies of single airborne particles represent a demanding challenge in aerosol chemistry. New technologies that help to unravel the role of ambient aerosols in earth climate and to assess local and specific health risks from air pollution are highly desired. Of particular relevance are polycyclic aromatic hydrocarbons (PAHs) from combustion processes that are associated with both acute and long-term health effects. Usually, online single particle analyses apply laser desorption/ionization (LDI) in a bipolar mass spectrometer, revealing elemental constituents and limited molecular information by detection of both positive and negative ions. Approaches for the detection of PAHs from single particles have been developed but the elemental information from LDI that allows particle classification and source apportionment is lost in that case. Here we present a novel laser desorption and ionization method delivering both the PAH-profile and the inorganic composition from the same, individual particle. Test measurements demonstrate the technique's capability to reveal the single-particle PAH-distribution in aerosols (mixing state) and its assignment to specific pollution sources in a new and direct way.

8.
Environ Sci Pollut Res Int ; 24(12): 10976-10991, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27137191

RESUMEN

Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos/análisis , Aceites Combustibles , Gasolina , Navíos , Emisiones de Vehículos/análisis , Humanos , Material Particulado
9.
PLoS One ; 11(6): e0157964, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27348622

RESUMEN

Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.


Asunto(s)
Aceites Combustibles/toxicidad , Gasolina/toxicidad , Macrófagos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Proteoma/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Animales , Línea Celular , Macrófagos/metabolismo , Ratones
10.
PLoS One ; 10(6): e0126536, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039251

RESUMEN

BACKGROUND: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. METHODS: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. RESULTS: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. CONCLUSIONS: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.


Asunto(s)
Endocitosis/efectos de los fármacos , Gasolina , Pulmón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Línea Celular Tumoral , Humanos , Pulmón/patología , Navíos
11.
Anal Bioanal Chem ; 405(22): 6953-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23812882

RESUMEN

Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI) are the most important techniques for the ionization of liquid samples. However, working under atmospheric pressure conditions, all these techniques involve some chemical rather than purely physical processes, and therefore, side reactions often yield to matrix-dependent ionization efficiencies. Here, a system is presented that combines both soft single-photon ionization (SPI) and hard 70 eV electron impact ionization (EI) of dissolved compounds under vacuum conditions. A quadrupole mass spectrometer was modified to enable direct EI, a technique developed by Cappiello et al. to obtain library-searchable EI mass spectra as well as soft SPI mass spectra of sample solutions. An electron beam-pumped rare gas excimer lamp working at 126 nm was used as well as a focusable vacuum UV light source for single-photon ionization. Both techniques, EI and SPI, were applied successfully for flow injection experiments providing library-matchable EI fragment mass spectra and soft SPI mass spectra, showing dominant signals for the molecular ion. Four model compounds were analyzed: hexadecane, propofol, chlorpropham, and eugenol, with detection limits in the picomolar range. This novel combination of EI and SPI promises great analytical benefits, thanks to the possibility of combining database alignment for EI data and molecular mass information provided by SPI. Possible applications for the presented ionization technology system are a matrix-effect-free detection and a rapid screening of different complex mixtures without time-consuming sample preparation or separation techniques (e.g., for analysis of reaction solutions in combinatorial chemistry) or a switchable hard (EI) and soft (SPI) MS method as detection step for liquid chromatography.


Asunto(s)
Análisis de Inyección de Flujo/instrumentación , Iones/química , Espectrometría de Masas/instrumentación , Electrones , Diseño de Equipo , Fotones , Rayos Ultravioleta , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...