Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Extracell Biol ; 1(10)2022 Oct.
Article En | MEDLINE | ID: mdl-36591537

Extracellular vesicles (EVs) have potential in disease treatment since they can be loaded with therapeutic molecules and engineered for retention by specific tissues. However, questions remain on optimal dosing, administration, and pharmacokinetics. Previous studies have addressed biodistribution and pharmacokinetics in rodents, but little evidence is available for larger animals. Here, we investigated the pharmacokinetics and biodistribution of Expi293F-derived EVs labelled with a highly sensitive nanoluciferase reporter (palmGRET) in a non-human primate model (Macaca nemestrina), comparing intravenous (IV) and intranasal (IN) administration over a 125-fold dose range. We report that EVs administered IV had longer circulation times in plasma than previously reported in mice and were detectable in cerebrospinal fluid (CSF) after 30-60 minutes. EV association with PBMCs, especially B-cells, was observed as early as one minute post-administration. EVs were detected in liver and spleen within one hour of IV administration. However, IN delivery was minimal, suggesting that pretreatment approaches may be needed in large animals. Furthermore, EV circulation times strongly decreased after repeated IV administration, possibly due to immune responses and with clear implications for xenogeneic EV-based therapeutics. We hope that our findings from this baseline study in macaques will help to inform future research and therapeutic development of EVs.

2.
AIDS ; 33 Suppl 2: S181-S188, 2019 12 01.
Article En | MEDLINE | ID: mdl-31789817

: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.


Brain/virology , Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Latency , Animals , Anti-Retroviral Agents/therapeutic use , Brain/immunology , CD4-Positive T-Lymphocytes/virology , HIV Infections/drug therapy , Humans , Macaca mulatta , Myeloid Cells/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Viral Load , Virus Replication
...