Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37972067

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
2.
Bioinform Adv ; 3(1): vbad129, 2023.
Article En | MEDLINE | ID: mdl-37786533

Summary: Protein kinases are a family of signaling proteins, crucial for maintaining cellular homeostasis. When dysregulated, kinases drive the pathogenesis of several diseases, and are thus one of the largest target categories for drug discovery. Kinase activity is tightly controlled by switching through several active and inactive conformations in their catalytic domain. Kinase inhibitors have been designed to engage kinases in specific conformational states, where each conformation presents a unique physico-chemical environment for therapeutic intervention. Thus, modeling kinases across conformations can enable the design of novel and optimally selective kinase drugs. Due to the recent success of AlphaFold2 in accurately predicting the 3D structure of proteins based on sequence, we investigated the conformational landscape of protein kinases as modeled by AlphaFold2. We observed that AlphaFold2 is able to model several kinase conformations across the kinome, however, certain conformations are only observed in specific kinase families. Furthermore, we show that the per residue predicted local distance difference test can capture information describing structural flexibility of kinases. Finally, we evaluated the docking performance of AlphaFold2 kinase structures for enriching known ligands. Taken together, we see an opportunity to leverage AlphaFold2 models for structure-based drug discovery against kinases across several pharmacologically relevant conformational states. Availability and implementation: All code used in the analysis is freely available at https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape.

3.
Pain ; 164(7): 1473-1488, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-36729125

ABSTRACT: Vascular endothelial growth factor A (VEGF-A) is a pronociceptive factor that causes neuronal sensitization and pain. We reported that blocking the interaction between the membrane receptor neuropilin 1 (NRP1) and VEGF-A-blocked VEGF-A-mediated sensory neuron hyperexcitability and reduced mechanical hypersensitivity in a rodent chronic neuropathic pain model. These findings identified the NRP1-VEGF-A signaling axis for therapeutic targeting of chronic pain. In an in-silico screening of approximately 480 K small molecules binding to the extracellular b1b2 pocket of NRP1, we identified 9 chemical series, with 6 compounds disrupting VEGF-A binding to NRP1. The small molecule with greatest efficacy, 4'-methyl-2'-morpholino-2-(phenylamino)-[4,5'-bipyrimidin]-6(1H)-one, designated NRP1-4, was selected for further evaluation. In cultured primary sensory neurons, VEGF-A enhanced excitability and decreased firing threshold, which was blocked by NRP1-4. In addition, NaV1.7 and CaV2.2 currents and membrane expression were potentiated by treatment with VEGF-A, and this potentiation was blocked by NRP1-4 cotreatment. Neuropilin 1-4 reduced VEGF-A-mediated increases in the frequency and amplitude of spontaneous excitatory postsynaptic currents in dorsal horn of the spinal cord. Neuropilin 1-4 did not bind to more than 300 G-protein-coupled receptors and receptors including human opioids receptors, indicating a favorable safety profile. In rats with spared nerve injury-induced neuropathic pain, intrathecal administration of NRP1-4 significantly attenuated mechanical allodynia. Intravenous treatment with NRP1-4 reversed both mechanical allodynia and thermal hyperalgesia in rats with L5/L6 spinal nerve ligation-induced neuropathic pain. Collectively, our findings show that NRP1-4 is a first-in-class compound targeting the NRP1-VEGF-A signaling axis to control voltage-gated ion channel function, neuronal excitability, and synaptic activity that curb chronic pain.


Chronic Pain , Neuralgia , Rats , Humans , Animals , Vascular Endothelial Growth Factor A/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Neuropilin-1/metabolism , Neuropilin-1/therapeutic use , Chronic Pain/complications , Spinal Cord Dorsal Horn/metabolism , Sensory Receptor Cells/metabolism
4.
Sci Transl Med ; 13(619): eabh1314, 2021 11 10.
Article En | MEDLINE | ID: mdl-34757807

The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics­without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.


Chronic Pain , NAV1.7 Voltage-Gated Sodium Channel , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Rodentia/metabolism , Sumoylation
5.
ACS Chem Neurosci ; 12(8): 1299-1312, 2021 04 21.
Article En | MEDLINE | ID: mdl-33787218

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.


COVID-19 , Neuropilin-1 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vascular Endothelial Growth Factor A , Virus Internalization
6.
Channels (Austin) ; 15(1): 128-135, 2021 12.
Article En | MEDLINE | ID: mdl-33416017

Structural studies with an α subunit fragment of voltage-gated calcium (CaV) channels in complex with the CaVß subunits revealed a high homology between the various CaVα-ß subunits, predicting that targeting of this interface would result in nonselective compounds. Despite this likelihood, my laboratory initiated a rational structure-based screening campaign focusing on "hot spots" on the alpha interacting domain (AID) of the CaVß2a subunits and identified the small molecule 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide ( IPPQ ) which selectively targeted the interface between the N-type calcium (CaV2.2) channel and CaVß. IPPQ (i) specifically bound to CaVß2a; (ii) inhibited CaVß2 's interaction with CaV.2-AID; (iii) inhibited CaV2.2 currents in sensory neurons; (iv) inhibited pre-synaptic localization of CaV2.2 in vivo; and (v) inhibited spinal neurotransmission, which resulted in decreased neurotransmitter release. IPPQ was anti-nociceptive in naïve rats and reversed mechanical allodynia and thermal hyperalgesia in rodent models of acute, neuropathic, and genetic pain. In structure-activity relationship (SAR) studies focused on improving binding affinity of IPPQ , another compound (BTT-369), a benzoyl-3,4-dihydro-1'H,2 H-3,4'-bipyrazole class of compounds, was reported by Chen and colleagues, based on work conducted in my laboratory beginning in 2008. BTT-369 contains tetraaryldihydrobipyrazole scaffold - a chemotype featuring phenyl groups known to be significantly metabolized, lower the systemic half-life, and increase the potential for toxicity. Furthermore, the benzoylpyrazoline skeleton in BTT-369 is patented across multiple therapeutic indications. Prior to embarking on an extensive optimization campaign of IPPQ , we performed a head-to-head comparison of the two compounds. We conclude that IPPQ is superior to BTT-369 for on-target efficacy, setting the stage for SAR studies to improve on IPPQ for the development of novel pain therapeutics.


Calcium Channel Blockers , Animals , Calcium Channels, N-Type , Hyperalgesia , Quinazolines , Rats
7.
bioRxiv ; 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32995772

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.

8.
ACS Chem Neurosci ; 11(17): 2492-2505, 2020 09 02.
Article En | MEDLINE | ID: mdl-32693579

Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.


Nerve Tissue Proteins , Neurodegenerative Diseases , Humans , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/drug therapy , Phosphorylation , Protein Processing, Post-Translational
9.
Pain ; 161(11): 2551-2570, 2020 11.
Article En | MEDLINE | ID: mdl-32541387

The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.


Neuralgia , Spinal Nerves , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type , Ganglia, Spinal , Glycoproteins/therapeutic use , HIV Infections , Neuralgia/chemically induced , Neuralgia/drug therapy , Paclitaxel , Rats , Rats, Sprague-Dawley
10.
ACS Chem Neurosci ; 10(12): 4834-4846, 2019 12 18.
Article En | MEDLINE | ID: mdl-31697467

Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.


Analgesics/pharmacology , Flavanones/pharmacology , Ganglia, Spinal/cytology , NAV1.8 Voltage-Gated Sodium Channel/drug effects , Nociception/drug effects , Sensory Receptor Cells/drug effects , Sodium Channel Blockers/pharmacology , Sodium/metabolism , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Calcium Channels/drug effects , Calcium Signaling/drug effects , Excitatory Postsynaptic Potentials/drug effects , Female , Flavanones/chemistry , Flavanones/metabolism , Flavanones/therapeutic use , Hyperalgesia/drug therapy , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Models, Molecular , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Neuralgia/drug therapy , Pain, Postoperative/drug therapy , Protein Conformation , Protein Interaction Mapping , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/classification , Sensory Receptor Cells/metabolism , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/therapeutic use , Specific Pathogen-Free Organisms , Structure-Activity Relationship
11.
ACS Chem Neurosci ; 10(6): 2939-2955, 2019 06 19.
Article En | MEDLINE | ID: mdl-30946560

No universally efficacious therapy exists for chronic pain, a disease affecting one-fifth of the global population. An overreliance on the prescription of opioids for chronic pain despite their poor ability to improve function has led to a national opioid crisis. In 2018, the NIH launched a Helping to End Addiction Long-term plan to spur discovery and validation of novel targets and mechanisms to develop alternative nonaddictive treatment options. Phytochemicals with medicinal properties have long been used for various treatments worldwide. The natural product physalin F, isolated from the Physalis acutifolia (family: Solanaceae) herb, demonstrated antinociceptive effects in models of inflammatory pain, consistent with earlier reports of its anti-inflammatory and immunomodulatory activities. However, the target of action of physalin F remained unknown. Here, using whole-cell and slice electrophysiology, competition binding assays, and experimental models of neuropathic pain, we uncovered a molecular target for physalin F's antinociceptive actions. We found that physalin F (i) blocks CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels in dorsal root ganglion (DRG) neurons, (ii) does not affect CaV3 (T-type) voltage-gated calcium channels or voltage-gated sodium or potassium channels, (iii) does not bind G-protein coupled opioid receptors, (iv) inhibits the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord slices, and (v) reverses tactile hypersensitivity in models of paclitaxel-induced peripheral neuropathy and spinal nerve ligation. Identifying CaV2.2 as a molecular target of physalin F may spur its use as a tool for mechanistic studies and position it as a structural template for future synthetic compounds.


Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/drug effects , Calcium Channels, R-Type/drug effects , Cation Transport Proteins/drug effects , Neuralgia/metabolism , Secosteroids/pharmacology , Analgesics/pharmacology , Animals , Cation Transport Proteins/antagonists & inhibitors , Ganglia, Spinal/drug effects , Male , Rats , Rats, Sprague-Dawley
12.
Cell Rep ; 9(5): 1946-1958, 2014 Dec 11.
Article En | MEDLINE | ID: mdl-25464845

Protein-protein interactions (PPIs) play central roles in orchestrating biological processes. While some PPIs are stable, many important ones are transient and hard to detect with conventional approaches. We developed ReBiL, a recombinase enhanced bimolecular luciferase complementation platform, to enable detection of weak PPIs in living cells. ReBiL readily identified challenging transient interactions between an E3 ubiquitin ligase and an E2 ubiquitin-conjugating enzyme. ReBiL's ability to rapidly interrogate PPIs in diverse conditions revealed that some stapled α-helical peptides, a class of PPI antagonists, induce target-independent cytosolic leakage and cytotoxicity that is antagonized by serum. These results explain the requirement for serum-free conditions to detect stapled peptide activity, and define a required parameter to evaluate for peptide antagonist approaches. ReBiL's ability to expedite PPI analysis, assess target specificity and cell permeability, and reveal off-target effects of PPI modifiers should facilitate the development of effective, cell-permeable PPI therapeutics and the elaboration of diverse biological mechanisms.


Protein Interaction Mapping/methods , Cell Cycle Proteins , Cell Line, Tumor , Genes, Reporter , Humans , Luciferases, Firefly/biosynthesis , Mutation, Missense , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Recombinases/physiology , Tumor Suppressor Protein p53/genetics
13.
Curr Opin Chem Biol ; 12(3): 332-9, 2008 Jun.
Article En | MEDLINE | ID: mdl-18501202

This account briefly discusses methods of in-cavity synthesis with the main focus on molecularly imprinted polymers and self-assembled capsules. Discussed are examples that highlight recent progress and outline key challenges for the further development of in-cavity synthesis. Emphasis is intentionally placed at potential applications in drug discovery and combinatorial technologies.


Drug Design , Nanocapsules/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Combinatorial Chemistry Techniques , Molecular Imprinting , Polymers/chemistry
14.
J Am Chem Soc ; 128(13): 4178-9, 2006 Apr 05.
Article En | MEDLINE | ID: mdl-16568963

A molecularly imprinted polymer has been successfully utilized as nanoreactors for Huisgen 1,3-dipolar cycloaddition of azides and alkynes, leading to high product regioselectivity and kinetic acceleration. The MIP nanoreactors also showed remarkable selectivity toward the reactant structures, so that the "best fit" product was mostly amplified during the reaction. In contrast to previously reported regioselective MIPs, the present imprinted cavities bind reactants by means of only noncovalent molecular interactions, the same as that normally involved in biological systems. The results support the concept of drug "cloning" that further extends both the anti-idiotypic imprinting and in-cavity synthesis approaches into the modern drug discovery area.


Acetylene/analogs & derivatives , Azides/chemistry , Drug Design , Nanostructures/chemistry , Polymers/chemistry , Acetylene/chemistry , Cyclization , Polymers/chemical synthesis
15.
Anal Chem ; 77(14): 4378-84, 2005 Jul 15.
Article En | MEDLINE | ID: mdl-16013849

A specially designed mass spectrometer which allows for preparative separation of mixtures is described. This mass spectrometer allows for large ion currents, on the order of nanoamperes, to be produced by electrospray and transmitted into a high vacuum. Accumulation of nanomole quantities of collected and recovered material in several hours is demonstrated. The use of high-velocity ions reduces space charge effects at high ion currents. Separation of mass occurs simultaneously for all ions, providing a 100% duty cycle. The use of a linear dispersion magnet avoids compression at higher m/z ratios. A deceleration lens slows the ions to allow for soft landing at low kinetic energy. The ions are neutralized by ion pairing on an oxidized metal surface. Retractable landing plates allow for easy removal of the separated components.

16.
J Comb Chem ; 6(1): 43-9, 2004.
Article En | MEDLINE | ID: mdl-14714983

One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.

...