Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Digit Health ; 9: 20552076231194936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654707

RESUMEN

Background: Pain continues to be a difficult and pervasive problem for patients with cancer, and those who care for them. Remote health monitoring systems (RHMS), such as the Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C), can utilize Ecological Momentary Assessments (EMAs) to provide a more holistic understanding of the patient and family experience of cancer pain within the home context. Methods: Participants used the BESI-C system for 2-weeks which collected data via EMAs deployed on wearable devices (smartwatches) worn by both patients with cancer and their primary family caregiver. We developed three unique EMA schemas that allowed patients and caregivers to describe patient pain events and perceived impact on quality of life from their own perspective. EMA data were analyzed to provide a descriptive summary of pain events and explore different types of data visualizations. Results: Data were collected from five (n = 5) patient-caregiver dyads (total 10 individual participants, 5 patients, 5 caregivers). A total of 283 user-initiated pain event EMAs were recorded (198 by patients; 85 by caregivers) over all 5 deployments with an average severity score of 5.4/10 for patients and 4.6/10 for caregivers' assessments of patient pain. Average self-reported overall distress and pain interference levels (1 = least distress; 4 = most distress) were higher for caregivers (x¯ 3.02, x¯2.60,respectively) compared to patients (x¯ 2.82, x¯ 2.25, respectively) while perceived burden of partner distress was higher for patients (i.e., patients perceived caregivers to be more distressed, x¯ 3.21, than caregivers perceived patients to be distressed, x¯2.55). Data visualizations were created using time wheels, bubble charts, box plots and line graphs to graphically represent EMA findings. Conclusion: Collecting data via EMAs is a viable RHMS strategy to capture longitudinal cancer pain event data from patients and caregivers that can inform personalized pain management and distress-alleviating interventions.

2.
JMIR Cancer ; 8(3): e36879, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35943791

RESUMEN

BACKGROUND: Distressing cancer pain remains a serious symptom management issue for patients and family caregivers, particularly within home settings. Technology can support home-based cancer symptom management but must consider the experience of patients and family caregivers, as well as the broader environmental context. OBJECTIVE: This study aimed to test the feasibility and acceptability of a smart health sensing system-Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C)-that was designed to support the monitoring and management of cancer pain in the home setting. METHODS: Dyads of patients with cancer and their primary family caregivers were recruited from an outpatient palliative care clinic at an academic medical center. BESI-C was deployed in each dyad home for approximately 2 weeks. Data were collected via environmental sensors to assess the home context (eg, light and temperature); Bluetooth beacons to help localize dyad positions; and smart watches worn by both patients and caregivers, equipped with heart rate monitors, accelerometers, and a custom app to deliver ecological momentary assessments (EMAs). EMAs enabled dyads to record and characterize pain events from both their own and their partners' perspectives. Sensor data streams were integrated to describe and explore the context of cancer pain events. Feasibility was assessed both technically and procedurally. Acceptability was assessed using postdeployment surveys and structured interviews with participants. RESULTS: Overall, 5 deployments (n=10 participants; 5 patient and family caregiver dyads) were completed, and 283 unique pain events were recorded. Using our "BESI-C Performance Scoring Instrument," the overall technical feasibility score for deployments was 86.4 out of 100. Procedural feasibility challenges included the rurality of dyads, smart watch battery life and EMA reliability, and the length of time required for deployment installation. Postdeployment acceptability Likert surveys (1=strongly disagree; 5=strongly agree) found that dyads disagreed that BESI-C was a burden (1.7 out of 5) or compromised their privacy (1.9 out of 5) and agreed that the system collected helpful information to better manage cancer pain (4.6 out of 5). Participants also expressed an interest in seeing their own individual data (4.4 out of 5) and strongly agreed that it is important that data collected by BESI-C are shared with their respective partners (4.8 out of 5) and health care providers (4.8 out of 5). Qualitative feedback from participants suggested that BESI-C positively improved patient-caregiver communication regarding pain management. Importantly, we demonstrated proof of concept that seriously ill patients with cancer and their caregivers will mark pain events in real time using a smart watch. CONCLUSIONS: It is feasible to deploy BESI-C, and dyads find the system acceptable. By leveraging human-centered design and the integration of heterogenous environmental, physiological, and behavioral data, the BESI-C system offers an innovative approach to monitor cancer pain, mitigate the escalation of pain and distress, and improve symptom management self-efficacy. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/16178.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA