Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907003

RESUMEN

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.

2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338689

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.


Asunto(s)
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Leucemia de Células T/metabolismo , Apoptosis , Proliferación Celular , Microambiente Tumoral
3.
J Biomol Struct Dyn ; 40(10): 4507-4515, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33306006

RESUMEN

The inherent ability of the cancer cells to resist chemotherapeutic agents is a major challenge in drug discovery. Chemotherapy is one of the most widely used treatment methods for cancer, but due to multidrug resistance (MDR) development in cancer cells, the healing procedure often fails. Various factors impart cancer resistance to cells; among them, P-glycoprotein (P-gp) overexpression is directly linked to MDR in cancer cells. P-gp leads to the efflux of drug molecules to the extracellular space. Several molecules have been reported to inhibit the P-gp activity. Among them, quercetin has revealed a great potential to modulate P-gp activity. However, the mechanistic understanding of quercetin induced modulation is not entirely elucidated. In the present work, we showed that quercetin binds in the interacting region between the transmembrane domain and nucleotide-binding domain out of the three plausible binding sites of P-gp and restrict the conformational change from inward- to outward-facing conformation of P-gp. Due to the absence of the inward-facing structure of human P-gp, we first modeled an inward-facing P-gp structure. Using molecular docking, the interacting residues of P-gp were identified, and the stability and interaction dynamics of the complex were studied using molecular dynamics simulation. Our work reveals the mechanistic understanding of quercetin induced modulation of P-gp and indicates its importance in cancer treatment.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias , Quercetina , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Nucleótidos/metabolismo , Quercetina/farmacología , Transducción de Señal
4.
Front Cell Dev Biol ; 9: 691644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422814

RESUMEN

Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...