Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Anesthesiol ; 24(1): 122, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38539065

Spinal surgeries are accompanied by excessive pain due to extensive dissection and muscle retraction during the procedure. Thoracolumbar interfascial plane (TLIP) blocks for spinal surgeries are a recent addition to regional anesthesia to improve postoperative pain management. When performing a classical TLIP (cTLIP) block, anesthetics are injected between the muscle (m.) multifidus and m. longissimus. During a modified TLIP (mTLIP) block, anesthetics are injected between the m. longissimus and m. iliocostalis instead. Our systematic review provides a comprehensive evaluation of the effectiveness of TLIP blocks in improving postoperative outcomes in spinal surgery through an analysis of randomized controlled trials (RCTs).We conducted a systematic review based on the PRISMA guidelines using PubMed and Scopus databases. Inclusion criteria required studies to be RCTs in English that used TLIP blocks during spinal surgery and report both outcome measures. Outcome data includes postoperative opioid consumption and pain.A total of 17 RCTs were included. The use of a TLIP block significantly decreases postoperative opioid use and pain compared to using general anesthesia (GA) plus 0.9% saline with no increase in complications. There were mixed outcomes when compared against wound infiltration with local anesthesia. When compared with erector spinae plane blocks (ESPB), TLIP blocks often decreased analgesic use, however, this did not always translate to decreased pain. The cTLIP and mTLP block methods had comparable postoperative outcomes but the mTLIP block had a significantly higher percentage of one-time block success.The accumulation of the current literature demonstrates that TLIP blocks are superior to non-block procedures in terms of analgesia requirements and reported pain throughout the hospitalization in patients who underwent spinal surgery. The various levels of success seen with wound infiltration and ESPB could be due to the nature of the different spinal procedures. For example, studies that saw superiority with TLIP blocks included fusion surgeries which is a more invasive procedure resulting in increased postoperative pain compared to discectomies.The results of our systematic review include moderate-quality evidence that show TLIP blocks provide effective pain control after spinal surgery. Although, the application of mTLIP blocks is more successful, more studies are needed to confirm that superiority of mTLIP over cTLIP blocks. Additionally, further high-quality research is needed to verify the potential benefit of TLIP blocks as a common practice for spinal surgeries.


Analgesics, Opioid , Anesthetics , Humans , Pain Management , Neurosurgical Procedures , Pain, Postoperative/prevention & control
2.
mSphere ; 5(1)2020 01 22.
Article En | MEDLINE | ID: mdl-31969479

Emerging pathogen Candida auris causes nosocomial outbreaks of life-threatening invasive candidiasis. It is unclear how this species colonizes skin and spreads in health care facilities. Here, we analyzed C. auris growth in synthetic sweat medium designed to mimic axillary skin conditions. We show that C. auris demonstrates a high capacity for biofilm formation in this milieu, well beyond that observed for the most commonly isolated Candida sp., Candida albicans The C. auris biofilms persist in environmental conditions expected in the hospital setting. To model C. auris skin colonization, we designed an ex vivo porcine skin model. We show that C. auris proliferates on porcine skin in multilayer biofilms. This capacity to thrive in skin niche conditions helps explain the propensity of C. auris to colonize skin, persist on medical devices, and rapidly spread in hospitals. These studies provide clinically relevant tools to further characterize this important growth modality.IMPORTANCE The emerging fungal pathogen Candida auris causes invasive infections and is spreading in hospitals worldwide. Why this species exhibits the capacity to transfer efficiently among patients is unknown. Our findings reveal that C. auris forms high-burden biofilms in conditions mimicking sweat on the skin surface. These adherent biofilm communities persist in environmental conditions expected in the hospital setting. Using a pig skin model, we show that C. auris also forms high-burden biofilm structures on the skin surface. Identification of this mode of growth sheds light on how this recently described pathogen persists in hospital settings and spreads among patients.


Biofilms/growth & development , Candida/physiology , Skin/microbiology , Sweat/microbiology , Animals , Candida/pathogenicity , In Vitro Techniques , Sweat/chemistry , Swine
...