Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Am J Hum Genet ; 111(3): 456-472, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38367619

The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.


MicroRNAs , Smokers , Humans , Nicotine , Epigenesis, Genetic/genetics , Epigenome , Cohort Studies , Prospective Studies , Genome-Wide Association Study , DNA Methylation/genetics , CpG Islands/genetics , Receptors, Peptide/genetics , Receptors, G-Protein-Coupled/genetics
2.
PLoS One ; 18(9): e0291362, 2023.
Article En | MEDLINE | ID: mdl-37708117

Alzheimer's disease is the most common type of dementia that currently affects over 6.5 million people in the U.S. Currently there is no cure and the existing drug therapies attempt to delay the mental decline and improve cognitive abilities. Two of the most commonly prescribed such drugs are Donepezil and Memantine. We formally tested and confirmed the presence of a beneficial drug-drug interaction of Donepezil and Memantine using a causal inference analysis. We applied doubly robust estimators to one of the largest and high-quality medical databases to estimate the effect of two commonly prescribed Alzheimer's disease (AD) medications, Donepezil and Memantine, on the average number of hospital or emergency department visits per year among patients diagnosed with AD. Our results show that, compared to the absence of medication scenario, the Memantine monotherapy, and the Donepezil monotherapy, the combined use of Donepezil and Memantine treatment significantly reduces the average number of hospital or emergency department visits per year by 0.078 (13.8%), 0.144 (25.5%), and 0.132 days (23.4%), respectively. The assessed decline in the average number of hospital or emergency department visits per year is consequently associated with a substantial reduction in medical costs. As of 2022, according to the Alzheimer's Disease Association, there were over 6.5 million individuals aged 65 and older living with AD in the US alone. If patients who are currently on no drug treatment or using either Donepezil or Memantine alone were switched to the combined used of Donepezil and Memantine therapy, the average number of hospital or emergency department visits could decrease by over 613 thousand visits per year. This, in turn, would lead to a remarkable reduction in medical expenses associated with hospitalization of AD patients in the US, totaling over 940 million dollars per year.


Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Donepezil/therapeutic use , Memantine/therapeutic use , Hospitals , Emergency Service, Hospital
3.
bioRxiv ; 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37609176

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten papers organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability (p=2.71×10-9). Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses (p=1.15*10-07). In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

4.
Chem Res Toxicol ; 35(10): 1914-1922, 2022 10 17.
Article En | MEDLINE | ID: mdl-35998368

The Multiethnic Cohort Study has demonstrated that the risk for lung cancer in cigarette smokers among three ethnic groups is highest in Native Hawaiians, intermediate in Whites, and lowest in Japanese Americans. We hypothesized that differences in levels of DNA adducts in oral cells of cigarette smokers would be related to these differing risks of lung cancer. Therefore, we used liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry to quantify the acrolein-DNA adduct (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) and the lipid peroxidation-related DNA adduct 1,N6-etheno-dAdo (εdAdo, 2) in DNA obtained by oral rinse from 101 Native Hawaiians, 101 Whites, and 79 Japanese Americans. Levels of urinary biomarkers of nicotine, acrolein, acrylonitrile, and a mixture of crotonaldehyde, methyl vinyl ketone, and methacrolein were also quantified. Whites had significantly higher levels of γ-OH-Acr-dGuo than Japanese Americans and Native Hawaiians after adjusting for age and sex. There was no significant difference in levels of this DNA adduct between Japanese Americans and Native Hawaiians, which is not consistent with the high lung cancer risk of Native Hawaiians. Levels of εdAdo were modestly higher in Whites and Native Hawaiians than in Japanese Americans. The lower level of DNA adducts in the oral cells of Japanese American cigarette smokers than Whites is consistent with their lower risk for lung cancer. The higher levels of εdAdo, but not γ-OH-Acr-dGuo, in Native Hawaiian versus Japanese American cigarette smokers suggest that lipid peroxidation and related processes may be involved in their high risk for lung cancer, but further studies are required.


Acrylonitrile , Lung Neoplasms , Tobacco Products , Acrolein/chemistry , Cohort Studies , DNA , DNA Adducts , Ethnicity , Humans , Lipid Peroxidation , Lung Neoplasms/urine , Nicotine/urine , Purines , Smokers , Smoking
5.
Nicotine Tob Res ; 23(12): 2162-2169, 2021 11 05.
Article En | MEDLINE | ID: mdl-34313775

INTRODUCTION: The nicotine metabolite ratio and nicotine equivalents are measures of metabolism rate and intake. Genome-wide prediction of these nicotine biomarkers in multiethnic samples will enable tobacco-related biomarker, behavioral, and exposure research in studies without measured biomarkers. AIMS AND METHODS: We screened genetic variants genome-wide using marginal scans and applied statistical learning algorithms on top-ranked genetic variants, age, ethnicity and sex, and, in additional modeling, cigarettes per day (CPD), (in additional modeling) to build prediction models for the urinary nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equivalents (TNE) in 2239 current cigarette smokers in five ethnic groups. We predicted these nicotine biomarkers using model ensembles and evaluated external validity using dependence measures in 1864 treatment-seeking smokers in two ethnic groups. RESULTS: The genomic regions with the most selected and included variants for measured biomarkers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 (TNE, without and with CPD). We observed ensemble correlations between measured and predicted biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68) and 0.65 (0.72) in the training sample. We observed inconsistency in penalized regression models of TNE (with CPD) with fewer variants at chr15q25.1 selected and included. In treatment-seeking smokers, predicted uNMR (without CPD) was significantly associated with CPD and predicted TNE (without CPD) with CPD, time-to-first-cigarette, and Fagerström total score. CONCLUSIONS: Nicotine metabolites, genome-wide data, and statistical learning approaches developed novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. Predicted biomarker associations helped define genetically influenced components of nicotine dependence. IMPLICATIONS: We demonstrate development of robust models and multiethnic prediction of the uNMR and TNE using statistical and machine learning approaches. Variants included in trained models for nicotine biomarkers include top-ranked variants in multiethnic genome-wide studies of smoking behavior, nicotine metabolites, and related disease. Association of the two predicted nicotine biomarkers with Fagerström Test for Nicotine Dependence items supports models of nicotine biomarkers as predictors of physical dependence and nicotine exposure. Predicted nicotine biomarkers may facilitate tobacco-related disease and treatment research in samples with genomic data and limited nicotine metabolite or tobacco exposure data.


Tobacco Products , Tobacco Use Disorder , Biomarkers , Humans , Nicotine , Smoking/genetics , Tobacco Use Disorder/genetics
6.
Aging (Albany NY) ; 13(2): 1692-1717, 2021 01 19.
Article En | MEDLINE | ID: mdl-33468709

Type 2 Diabetes (T2D) is an emerging public health problem in Asia. Although ethnic specific mtDNA polymorphisms have been shown to contribute to T2D risk, the functional effects of the mtDNA polymorphisms and the therapeutic potential of mitochondrial-derived peptides at the mtDNA polymorphisms are underexplored. Here, we showed an Asian-specific mitochondrial DNA variation m.1382A>C (rs111033358) leads to a K14Q amino acid replacement in MOTS-c, an insulin sensitizing mitochondrial-derived peptide. Meta-analysis of three cohorts (n = 27,527, J-MICC, MEC, and TMM) show that males but not females with the C-allele exhibit a higher prevalence of T2D. In J-MICC, only males with the C-allele in the lowest tertile of physical activity increased their prevalence of T2D, demonstrating a kinesio-genomic interaction. High-fat fed, male mice injected with MOTS-c showed reduced weight and improved glucose tolerance, but not K14Q-MOTS-c treated mice. Like the human data, female mice were unaffected. Mechanistically, K14Q-MOTS-c leads to diminished insulin-sensitization in vitro. Thus, the m.1382A>C polymorphism is associated with susceptibility to T2D in men, possibly interacting with exercise, and contributing to the risk of T2D in sedentary males by reducing the activity of MOTS-c.


DNA, Mitochondrial , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Mitochondrial Proteins/genetics , Polymorphism, Single Nucleotide , 3T3-L1 Cells , Adult , Aged , Aged, 80 and over , Animals , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism
7.
Nature ; 570(7762): 514-518, 2019 06.
Article En | MEDLINE | ID: mdl-31217584

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.


Asian People/genetics , Black People/genetics , Genome-Wide Association Study/methods , Hispanic or Latino/genetics , Minority Groups , Multifactorial Inheritance/genetics , Women's Health , Body Height/genetics , Cohort Studies , Female , Genetics, Medical/methods , Health Equity/trends , Health Status Disparities , Humans , Male , United States
8.
Clin Epigenetics ; 10(1): 110, 2018 08 23.
Article En | MEDLINE | ID: mdl-30139389

BACKGROUND: Lung cancer is the leading cause of cancer-related death. While cigarette smoking is the primary cause of this malignancy, risk differs across racial/ethnic groups. For the same number of cigarettes smoked, Native Hawaiians compared to whites are at greater risk and Japanese Americans are at lower risk of developing lung cancer. DNA methylation of specific CpG sites (e.g., in AHRR and F2RL3) is the most common blood epigenetic modification associated with smoking status. However, the influence of internal smoking dose, measured by urinary nicotine equivalents (NE), on DNA methylation in current smokers has not been investigated, nor has a study evaluated whether for the same smoking dose, circulating leukocyte DNA methylation patterns differ by race. METHODS: We conducted an epigenome-wide association study (EWAS) of NE in 612 smokers from three racial/ethnic groups: whites (n = 204), Native Hawaiians (n = 205), and Japanese Americans (n = 203). Genome-wide DNA methylation profiling of blood leukocyte DNA was measured using the Illumina 450K BeadChip array. Average ß value, the ratio of signal from a methylated probe relative to the sum of the methylated and unmethylated probes at that CpG, was the dependent variables in linear regression models adjusting for age, sex, race (for pan-ethnic analysis), and estimated cell-type distribution. RESULTS: We found that NE was significantly associated with six differentially methylated CpG sites (Bonferroni corrected p < 1.48 × 10-7): four in or near the FOXK2, PBX1, FNDC7, and FUBP3 genes and two in non-annotated genetic regions. Higher levels of NE were associated with increasing methylation beta-valuesin all six sites. For all six CpG sites, the association was only observed in Native Hawaiians, suggesting that the influence of smoking dose on DNA methylation patterns is heterogeneous across race/ethnicity (p interactions < 8.8 × 10-8). We found two additional CpG sites associated with NE in only Native Hawaiians. CONCLUSIONS: In conclusion, internal smoking dose was associated with increased DNA methylation in circulating leukocytes at specific sites in Native Hawaiian smokers but not in white or Japanese American smokers.


Asian/genetics , DNA Methylation , Genome-Wide Association Study/methods , Native Hawaiian or Other Pacific Islander/genetics , Smoking/genetics , White People/genetics , Adult , Aged , CpG Islands , Epigenesis, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Nicotine/urine , Sequence Analysis, DNA , Smoking/ethnology , Smoking/urine , United States/ethnology
9.
Cancer Epidemiol Biomarkers Prev ; 26(7): 1034-1042, 2017 07.
Article En | MEDLINE | ID: mdl-28292921

Background: 1,3-Butadiene (BD) is an important carcinogen in tobacco smoke that undergoes metabolic activation to DNA-reactive epoxides. These species can be detoxified via glutathione conjugation and excreted in urine as the corresponding N-acetylcysteine conjugates. We hypothesize that single nucleotide polymorphisms (SNPs) in BD-metabolizing genes may change the balance of BD bioactivation and detoxification in White, Japanese American, and African American smokers, potentially contributing to ethnic differences in lung cancer risk.Methods: We measured the levels of BD metabolites, 1- and 2-(N-acetyl-L-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), in urine samples from a total of 1,072 White, Japanese American, and African American smokers and adjusted these values for body mass index, age, batch, and total nicotine equivalents. We also conducted a genome-wide association study to identify genetic determinants of BD metabolism.Results: We found that mean urinary MHBMA concentrations differed significantly by ethnicity (P = 4.0 × 10-25). African Americans excreted the highest levels of MHBMA followed by Whites and Japanese Americans. MHBMA levels were affected by GSTT1 gene copy number (P < 0.0001); conditional on GSTT1, no other polymorphisms showed a significant association. Urinary DHBMA levels also differed between ethnic groups (P = 3.3 × 10-4), but were not affected by GSTT1 copy number (P = 0.226).Conclusions:GSTT1 gene deletion has a strong effect on urinary MHBMA levels, and therefore BD metabolism, in smokers.Impact: Our results show that the order of MHBMA levels among ethnic groups is consistent with their respective lung cancer risk and can be partially explained by GSTT1 genotype. Cancer Epidemiol Biomarkers Prev; 26(7); 1034-42. ©2017 AACR.


Butadienes/metabolism , Carcinogens/metabolism , Glutathione Transferase/genetics , Lung Neoplasms/genetics , Smokers/statistics & numerical data , Smoking/metabolism , Acetylcysteine/analogs & derivatives , Acetylcysteine/metabolism , Acetylcysteine/urine , Black or African American/statistics & numerical data , Aged , Asian/statistics & numerical data , Biomarkers/urine , Female , Gene Deletion , Gene Dosage , Genome-Wide Association Study , Glutathione/metabolism , Glutathione Transferase/metabolism , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/urine , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Smoking/adverse effects , Smoking/urine , White People/statistics & numerical data
10.
Chem Res Toxicol ; 30(2): 678-688, 2017 02 20.
Article En | MEDLINE | ID: mdl-27997139

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a known human carcinogen. Occupational exposure to BD in the polymer and monomer industries is associated with an increased incidence of lymphoma. BD is present in automobile exhaust, cigarette smoke, and forest fires, raising concern about potential exposure of the general population to this carcinogen. Following inhalation exposure, BD is bioactivated to 3,4-epoxy-1-butene (EB). If not detoxified, EB is capable of modifying guanine and adenine bases of DNA to form nucleobase adducts, which interfere with accurate DNA replication and cause cancer-initiating mutations. We have developed a nanoLC/ESI+-HRMS3 methodology for N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts in human urine (limit of detection: 0.25 fmol/mL urine; limit of quantitation: 1.0 fmol/mL urine). This new method was successfully used to quantify EB-GII in urine of F344 rats treated with 0-200 ppm of BD, occupationally exposed workers, and smokers belonging to two different ethnic groups. EB-GII amounts increased in a dose-dependent manner in urine of laboratory rats exposed to 0, 62.5, or 200 ppm of BD. Urinary EB-GII levels were significantly increased in workers occupationally exposed to 0.1-2.2 ppm of BD (1.25 ± 0.51 pg/mg of creatinine) as compared to administrative controls exposed to <0.01 ppm of BD (0.22 ± 0.08 and pg/mg of creatinine) (p = 0.0024), validating the use of EB-GII as a biomarker of human exposure to BD. EB-GII was also detected in smokers' urine with European American smokers excreting significantly higher amounts of EB-GII than African American smokers (0.48 ± 0.09 vs 0.12 ± 0.02 pg/mg of creatinine, p = 3.1 × 10-7). Interestingly, small amounts of EB-GII were observed in animals and humans with no known exposure to BD, providing preliminary evidence for its endogenous formation. Urinary EB-GII adduct levels and urinary mercapturic acids of BD (MHBMA, DHBMA) were compared in a genotyped multiethnic smoker cohort.


Biomarkers/urine , Butadienes/toxicity , Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Chromatography, High Pressure Liquid , Ethnicity , Guanine/urine , Humans , Indicator Dilution Techniques , Rats , Rats, Inbred F344 , Reproducibility of Results
11.
Cancer Res ; 76(19): 5768-5776, 2016 10 01.
Article En | MEDLINE | ID: mdl-27488534

Metabolism of nicotine by cytochrome P450 2A6 (CYP2A6) is a suspected determinant of smoking dose and, consequently, lung cancer risk. We conducted a genome-wide association study (GWAS) of CYP2A6 activity, as measured by the urinary ratio of trans-3'-hydroxycotinine and its glucuronide conjugate over cotinine (total 3HCOT/COT), among 2,239 smokers in the Multiethnic Cohort (MEC) study. We identified 248 CYP2A6 variants associated with CYP2A6 activity (P < 5 × 10-8). CYP2A6 activity was correlated (r = 0.32; P < 0.0001) with total nicotine equivalents (a measure of nicotine uptake). When we examined the effect of these variants on lung cancer risk in the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium GWAS dataset (13,479 cases and 43,218 controls), we found that the vast majority of these individual effects were directionally consistent and associated with an increased lung cancer risk. Two hundred and twenty-six of the 248 variants associated with CYP2A6 activity in the MEC were available in TRICL. Of them, 81% had directionally consistent risk estimates, and six were globally significantly associated with lung cancer. When conditioning on nine known functional variants and two deletions, the top two SNPs (rs56113850 in MEC and rs35755165 in TRICL) remained significantly associated with CYP2A6 activity in MEC and lung cancer in TRICL. The present data support the hypothesis that a greater CYP2A6 activity causes smokers to smoke more extensively and be exposed to higher levels of carcinogens, resulting in an increased risk for lung cancer. Although the variants identified in these studies may be used as risk prediction markers, the exact causal variants remain to be identified. Cancer Res; 76(19); 5768-76. ©2016 AACR.


Cytochrome P-450 CYP2A6/metabolism , Genome-Wide Association Study , Lung Neoplasms/etiology , Polymorphism, Single Nucleotide , Smoking/adverse effects , Aged , Cytochrome P-450 CYP2A6/genetics , Female , Genetic Markers , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Risk
12.
J Calif Dent Assoc ; 44(6): 367-77, 2016 Jun.
Article En | MEDLINE | ID: mdl-27451546

This quality improvement project explored dental caries risk among children residing in El Monte, Calif., a low-income area 16 miles east of Los Angeles. In an attempt to decrease oral health disparities, Western University of Health Sciences, College of Dental Medicine established school-based oral health centers in El Monte and implemented a modified caries risk assessment protocol. Results showed a statistically significant decrease in caries risk following disease management interventions.


Dental Caries/prevention & control , Adolescent , California , Cariostatic Agents/therapeutic use , Child , Child Health , Child, Preschool , Cohort Studies , Dental Care for Children , Dental Caries Susceptibility , Electronic Health Records , Feeding Behavior , Female , Fluorides, Topical/therapeutic use , Health Status Disparities , Humans , Infant , Male , Motivational Interviewing , Oral Health , Oral Hygiene/education , Poverty , Quality Improvement , Retrospective Studies , Risk Assessment , School Dentistry , Vulnerable Populations , Young Adult
13.
PLoS One ; 11(6): e0156203, 2016.
Article En | MEDLINE | ID: mdl-27275760

Results from the Multiethnic Cohort Study demonstrated significant differences in lung cancer risk among cigarette smokers from five different ethnic/racial groups. For the same number of cigarettes smoked, and particularly among light smokers, African Americans and Native Hawaiians had the highest risk for lung cancer, Whites had intermediate risk, while Latinos and Japanese Americans had the lowest risk. We analyzed urine samples from 331-709 participants from each ethnic group in this study for metabolites of phenanthrene, a surrogate for carcinogenic polycyclic aromatic hydrocarbon exposure. Consistent with their lung cancer risk and our previous studies of several other carcinogens and toxicants of cigarette smoke, African Americans had significantly (p<0.0001) higher median levels of the two phenanthrene metabolites 3-hydroxyphenanthrene (3-PheOH, 0.931 pmol/ml) and phenanthrene tetraol (PheT, 1.13 pmol/ml) than Whites (3-PheOH, 0.697 pmol/ml; PheT, 0.853 pmol/ml) while Japanese-Americans had significantly (p = 0.002) lower levels of 3-PheOH (0.621 pmol/ml) than Whites. PheT levels (0.838 pmol/ml) in Japanese-Americans were not different from those of Whites. These results are mainly consistent with the lung cancer risk of these three groups, but the results for Native Hawaiians and Latinos were more complex. We also carried out a genome wide association study in search of factors that could influence PheT and 3-PheOH levels. Deletion of GSTT1 explained 2.2% of the variability in PheT, while the strongest association, rs5751777 (p = 1.8x10-62) in the GSTT2 gene, explained 7.7% of the variability in PheT. These GWAS results suggested a possible protective effect of lower GSTT1 copy number variants on the diol epoxide pathway, which was an unexpected result. Collectively, the results of this study provide further evidence that different patterns of cigarette smoking are responsible for the higher lung cancer risk of African Americans than of Whites and the lower lung cancer risk of Japanese Americans, while other factors appear to be involved in the differing risks of Native Hawaiians and Latinos.


Lung Neoplasms , Phenanthrenes/urine , Smoking , Aged , Female , Gene Dosage , Glutathione Transferase/genetics , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/ethnology , Lung Neoplasms/genetics , Lung Neoplasms/urine , Male , Middle Aged , Mutation , Neoplasm Proteins/genetics , Risk Factors , Smoking/ethnology , Smoking/genetics , Smoking/metabolism , Smoking/urine
14.
PLoS One ; 11(3): e0150641, 2016.
Article En | MEDLINE | ID: mdl-26959369

Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2-31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.


Acetylcysteine/analogs & derivatives , Benzene/metabolism , Glutathione Transferase/metabolism , Smoking/metabolism , Acetylcysteine/metabolism , Aged , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Quality Control , Risk Factors
15.
Carcinogenesis ; 37(3): 269-279, 2016 Mar.
Article En | MEDLINE | ID: mdl-26818358

Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.


Cytochrome P-450 CYP2A6/genetics , Lung Neoplasms/ethnology , Lung Neoplasms/genetics , Smoking/genetics , Adult , Aged , Chromatography, Liquid , Cohort Studies , Ethnicity/genetics , Female , Genetic Variation , Genotype , Humans , Lung Neoplasms/etiology , Male , Mass Spectrometry , Middle Aged , Nicotine/metabolism , Oligonucleotide Array Sequence Analysis , Risk Factors , Smoking/adverse effects
16.
Cancer Epidemiol Biomarkers Prev ; 24(1): 119-27, 2015 Jan.
Article En | MEDLINE | ID: mdl-25293881

BACKGROUND: The lung cancer risk of smokers varies by race/ethnicity even after adjustment for smoking. Evaluating the role of genetics in nicotine metabolism is likely important in understanding these differences, as disparities in risk may be related to differences in nicotine dose and metabolism. METHODS: We conducted a genome-wide association study in search of common genetic variants that predict nicotine and cotinine glucuronidation in a sample of 2,239 smokers (437 European Americans, 364 African Americans, 453 Latinos, 674 Japanese Americans, and 311 Native Hawaiians) in the Multiethnic Cohort Study. Urinary concentration of nicotine and its metabolites were determined. RESULTS: Among 11,892,802 variants analyzed, 1,241 were strongly associated with cotinine glucuronidation, 490 of which were also associated with nicotine glucuronidation (P < 5×10(-8)). The vast majority were within chromosomal region 4q13, near UGT2B10. Fifteen independent and globally significant SNPs explained 33.2% of the variation in cotinine glucuronidation, ranging from 55% for African Americans to 19% for Japanese Americans. The strongest single SNP association was for rs115765562 (P = 1.60 × 10(-155)). This SNP is highly correlated with a UGT2B10 splice site variant, rs116294140, which together with rs6175900 (Asp67Tyr) explains 24.3% of the variation. The top SNP for nicotine glucuronidation (rs116224959, P = 2.56 × 10(-43)) was in high LD (r(2) = 0.99) with rs115765562. CONCLUSIONS: Genetic variation in UGT2B10 contributes significantly to nicotine and cotinine glucuronidation but not to nicotine dose. IMPACT: The contribution of genetic variation to nicotine and cotinine glucuronidation varies significantly by racial/ethnic group, but is unlikely to contribute directly to lung cancer risk.


Ethnicity/genetics , Genome-Wide Association Study/methods , Glucuronides/metabolism , Nicotine/metabolism , Smoking/genetics , Aged , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Quality Control
...