Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256840

RESUMEN

For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978418

RESUMEN

Skin and soft tissue infections (SSTIs) and acne are among the most common skin conditions in primary care. SSTIs caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) can range in severity, and treating them is becoming increasingly challenging due to the growing number of antibiotic-resistant pathogens. There is also a rise in antibiotic-resistant strains of Cutibacterium acne, which plays a role in the development of acne. Antimicrobial peptides (AMPs) are considered to be a promising solution to the challenges posed by antibiotic resistance. In this study, six new AMPs were rationally designed and compared to five existing peptides. The MIC values against E. coli, P. aeruginosa, K. pneumoniae, E. faecium, S. aureus, and C. acnes were determined, and the peptides were evaluated for cytotoxicity using Balb/c 3T3 cells and dermal fibroblasts, as well as for hemolytic activity. The interaction with bacterial membranes and the effect on TNF-α and IL-10 secretion were also evaluated for selected peptides. Of the tested peptides, RP556 showed high broad-spectrum antibacterial activity without inducing cytotoxicity or hemolysis, and it stimulated the production of IL-10 in LPS-stimulated peripheral blood mononuclear cells. Four of the novel AMPs showed pronounced specificity against C. acnes, with MIC values (0.3-0.5 µg/mL) below the concentrations that were cytotoxic or hemolytic.

3.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677825

RESUMEN

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Asunto(s)
Antivirales , Metiltransferasas , SARS-CoV-2 , Metilación , Metiltransferasas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Viral/genética , S-Adenosilmetionina/química , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología
4.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34959647

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 µM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.

5.
Sci Rep ; 11(1): 20181, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642423

RESUMEN

Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.


Asunto(s)
Caspasa 3/genética , Gelsolina/genética , Exposición por Inhalación/efectos adversos , Interleucina-6/genética , Pulmón/citología , Exposición Profesional/análisis , Material Particulado/toxicidad , Células A549 , Proliferación Celular/efectos de los fármacos , Monitoreo del Ambiente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/química , Pulmón/efectos de los fármacos , Metalurgia , Tamaño de la Partícula , Supervivencia Tisular/efectos de los fármacos , Madera
6.
BMC Cancer ; 21(1): 1087, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625031

RESUMEN

BACKGROUND: Cancer remains one of the leading causes of death worldwide, despite the possibilities to detect early onset of the most common cancer types. The search for the optimal therapy is complicated by the cancer diversity within tumors and the unsynchronized development of cancerous cells. Therefore, it is necessary to characterize cancer cell populations after treatment has been applied, because cancer recurrence is not rare. In our research, we concentrated on small cancer cell subpopulation (microcells) that has a potential to be cancer resistance source. Previously made experiments has shown that these cells in small numbers form in specific circumstances after anticancer treatment. METHODS: In experiments described in this research, the anticancer agents' paclitaxel and doxorubicin were used to stimulate the induction of microcells in fibroblast, cervix adenocarcinoma, and melanoma cell lines. Mainly for the formation of microcells in melanoma cells. The drug-stimulated cells were then characterized in terms of their formation efficiency, morphology, and metabolic activity. RESULTS: We observed the development of cancer microcells and green fluorescent protein (GFP) transfection efficiency after stress. In the time-lapse experiment, we observed microcell formation through a renewal process and GFP expression in the microcells. Additionally, the microcells were viable after anticancer treatment, as indicated by the nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) enzyme activity assay results. Taken together, these findings indicate that cancer microcells are viable and capable of resisting the stress induced by anticancer drugs, and these cells are prone to chemical substance uptake from the environment. CONCLUSION: Microcells are not only common to a specific cancer type, but can be found in any tumor type. This study could help to understand cancer emergence and recurrence. The appearance of microcells in the studied cancer cell population could be an indicator of the individual anticancer therapy effectiveness and patient survival.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Recuento de Células , Línea Celular Tumoral , Núcleo Celular/ultraestructura , Autorrenovación de las Células , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Doxorrubicina/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Indicadores y Reactivos/farmacocinética , Melanoma/metabolismo , Melanoma/patología , Microscopía Electrónica , NADP/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias/metabolismo , Neoplasias/ultraestructura , Rojo Neutro/farmacocinética , Paclitaxel/farmacología , Estrés Fisiológico , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo , Transfección , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
7.
ACS Med Chem Lett ; 12(7): 1102-1107, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34257831

RESUMEN

Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase involved in cellular SAM/SAH ratio regulation was also determined, which indicated that the discovered compounds are nonselective inhibitors of the studied MTases with slight selectivity for Nsp16. No cytotoxic effects were observed; however, this is most likely a result of the poor cell permeability of all evaluated compounds.

8.
Cartilage ; 10(1): 26-35, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373926

RESUMEN

OBJECTIVES: To evaluate the main symptoms of knee osteoarthritis (OA) and tissue structure changes after a single dose bone marrow-derived mononuclear cell (BM MNC) intra articular injection. Case series study. Patients with knee OA Kellgren Lawrence (K-L) grade II and III received 1 injection of BM MNC. The clinical results were analyzed with the Knee injury and Osteoarthritis Outcome Score (KOOS) and Knee Society Score (KSS) before, 3, 6, and 12 months after injection. Radiological evaluation was performed with a calibrated x-ray and the magnetic resonance (MR) imaging before and 6 to 7 months postinjection. RESULTS: A total of 34 knees were treated with BM MNC injections. Mean (±SD) age of patient group was 53.96 ± 14.15 years; there were 16 males, 16 females, KL grade II, 16; KL grade III, 18. The average injected count of BM MNCs was 45.56 ± 34.94 × 106 cells. At the endpoint of 12 months 65% of patients still had minimal perceptible clinical improvement of the KOOS total score. The mean improvement of KOOS total score was +15.3 and of the KSS knee score was +21.45 and the function subscale +27.08 ( P < 0.05) points. The Whole Organ Magnetic Resonance Imaging Score (WORMS) improved from 44.31 to 42.93 points ( P < 0.05). No adverse effects after the BM-MNC injection were observed. CONCLUSIONS: The single dose BM MNC partially reduces clinical signs of the knee osteoarthritis stage II/III and in some cases, decreases degenerative changes in the joint building tissue over 12-month period.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Leucocitos Mononucleares/trasplante , Osteoartritis de la Rodilla/terapia , Adulto , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intraarticulares , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/patología , Radiografía , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
9.
J Cancer ; 9(6): 1033-1049, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29581783

RESUMEN

Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF­II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF­II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

10.
Medicina (Kaunas) ; 53(2): 101-108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28416171

RESUMEN

OBJECTIVE: The aim of this study was to compare treatment methods of the knee joint degenerative osteoarthritis, using autologous bone marrow-derived mononuclear cells and hyaluronic acid injections and observe prevalence of adverse effects in both groups. MATERIALS AND METHODS: A prospective randomized controlled clinical trial was carried out. The analysis of pain and changes in osteoarthritis symptoms after a single intra-articular bone marrow-derived mononuclear cell injection into the knee joint in the Kellgren-Lawrence stage II-III osteoarthritis during the 12-month period were performed. The results were compared with the control group treated routinely by hyaluronic acid injections therapy. A therapy group of patients (n=28) received single bone marrow-derived mononuclear cell intra-articular injections. A control group of patients (n=28) was treated with a total of three sodium hyaluronate intra-articular injections each one performed a week apart. The clinical results were obtained using the Knee Osteoarthritis Outcome Score (KOOS) and the Knee Society Score (KSS) before and 3, 6, and 12 months after injection. RESULTS: A statistically significant improvement was observed in the mononuclear cell group over the starting point in all scores. At the endpoint at month 12, the KOOS score improved significantly (P<0.05) on the pain subscale (+25.44), activity and daily living subscale (+21.36), quality of life subscale (+28.83), and total KOOS (+18.25). The KSS score also demonstrated a significant improvement on the symptoms subscale (+25.42) and the function subscale (+38.32) (P<0.001). The KOOS symptoms and sports subscales improved without statistical significance. The difference between the control group treated with hyaluronic acid versus the bone marrow-derived mononuclear cells group at time points 6 and 12 months demonstrated a statistically significant (P<0.05) superiority in the KOOS pain subscale over the hyaluronic acid group. In both groups serious adverse effects were not observed. CONCLUSIONS: The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed.


Asunto(s)
Trasplante de Médula Ósea , Ácido Hialurónico/administración & dosificación , Monocitos/trasplante , Osteoartritis de la Rodilla/terapia , Anciano , Trasplante de Médula Ósea/efectos adversos , Femenino , Humanos , Ácido Hialurónico/efectos adversos , Inyecciones Intraarticulares , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA