Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953558

RESUMEN

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 258(Pt 2): 129095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158067

RESUMEN

Starch attracts food industries due to their availability in nature, cheapness, biodegradability and possibilities of endless applications. The starch properties and their modification affect food quality. Compared to other cereals, tuber and root starches, more systematic information is needed on the jicama starches (JS). This review article summarizes the isolation, composition, morphology, rheological, thermal and digestibility properties of JS. The modifications and its current and potential applications are also discussed. The chemical composition and structure of JS are different from other starches, influencing its properties. JS has been modified by physical and chemical methods to improve the properties of starch. However, there are very few studies on the modification of JS as compared with other commercial starch although it has been used in food formulation as a stabilizer and to improve the texture of food products. It is also applied as an edible coating to preserve the quality of food products and use as a raw material for making edible and bioplastic packaging. However, large-scale utilization of JS is unexplored compared to commercial starches. Therefore, this review would provide useful information and suggestions for more research on Jicama starch and its industrial applications.


Asunto(s)
Pachyrhizus , Almidón , Almidón/química , Verduras , Grano Comestible , Industria de Alimentos
3.
Planta ; 256(2): 40, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834064

RESUMEN

MAIN CONCLUSION: This review highlights the economic importance of sweet potato and discusses new varieties, agronomic and cultivation practices, pest and disease control efforts, plant tissue culture protocols, and unexplored research areas involving this plant. Abstract Sweet potato is widely consumed in many countries around the world, including India, South Africa and China. Due to its valuable nutritional composition and highly beneficial bioactive compounds, sweet potato is considered a major tuber crop in India. Based on the volume of production, this plant ranks seventh in the world among all food crops. Sweet potato is considered a "Superfood" by the 'Centre for Science in the Public Interest' (CSPI), USA. This plant is mostly propagated through vegetative propagation using vine cuttings or tubers. However, this process is costly, labour-intensive, and comparatively slow. Conventional propagation methods are not able to supply sufficient disease-free planting materials to farmers to sustain steady tuber production. Therefore, there is an urgent need to use various biotechnological approaches, such as cell, tissue, and organ culture, for the large-scale production of healthy and disease-free planting material for commercial purposes throughout the year. In the last five decades, a number of tissue culture protocols have been developed for the production of in vitro plants through meristem culture, direct adventitious organogenesis, callus culture and somatic embryogenesis. Moreover, little research has been done on synthetic seed technology for the in vitro conservation and propagation of sweet potato. The current review comprehensively describes the biology, i.e., plant phenotypic description, vegetative growth, agronomy and cultivation, pests and diseases, varieties, and conventional methods of propagation, as well as biotechnological implementation, of this tuber crop. Furthermore, the explored and unexplored areas of research in sweet potato using biotechnological approaches have been reviewed.


Asunto(s)
Ipomoea batatas , Biología , Biotecnología , Productos Agrícolas , Tubérculos de la Planta
4.
PLoS One ; 17(7): e0270534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867657

RESUMEN

Plants are constantly threatened by a virus infection, i.e., Potyviruses, the second largest genus of plant viruses which results in several million-dollar losses in various essential crops globally. Yam bean (Pachyrhizus erosus) is considered to be one of the essential tuberous legume crops holding a great potential source of starch. Yam Bean Mosaic Virus (YBMV) of Potyvirus group belonging to the family potyviridae affects Yam bean and several angiosperms both in the tropical and sub-tropical regions causing large economical losses in crops. In this study, we attempted to understand the sequence-structure relationship and mode of RNA binding mechanism in YBMV CP using in silico integrative modeling and all-atoms molecular dynamics (MD) simulations. The assembly of coat protein (CP) subunits from YBMV and the plausible mode of RNA binding were compared with the experimental structure of CP from Watermelon mosaic virus potyvirus (5ODV). The transmembrane helix region is present in the YBMV CP sequence ranging from 76 to 91 amino acids. Like the close structural-homolog, 24 CPs monomeric sub-units formed YBMV a conserved fold. Our computational study showed that ARG124, ARG155, and TYR151 orient towards the inner side of the virion, while, THR122, GLN125, SER92, ASP94 reside towards the outer side of the virion. Despite sharing very low sequence similarity with CPs from other plant viruses, the strongly conserved residues Ser, Arg, and Asp within the RNA binding pocket of YBMV CP indicate the presence of a highly conserved RNA binding site in CPs from different families. Using several bioinformatics tools and comprehensive analysis from MD simulation, our study has provided novel insights into the RNA binding mechanism in YBMV CP. Thus, we anticipate that our findings from this study will be useful for the development of new therapeutic agents against the pathogen, paving the way for researchers to better control this destructive plant virus.


Asunto(s)
Fabaceae , Pachyrhizus , Potyvirus , Biología Computacional , Fabaceae/genética , Humanos , Pachyrhizus/química , Pachyrhizus/genética , Potyvirus/genética , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...