Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; : 7822-7831, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052510

RESUMEN

Chiral lead halide perovskite (LHP) nanocrystals (NCs) have been attracting considerable interest for circularly polarized luminescence (CPL)-based optoelectronic applications. This study combined experimental and computational analyses to investigate how the dimensionality of 3D (cubic) to 0D (quantum dots) influences the tunable chiral emission of CsPbBr3 LHP NCs. The circular dichroism (CD) spectra have a significant blue shift from 508 to 406 nm. The dissymmetry factors for CD (gCD) change from ±2.5 × 10-3 to ±7.5 × 10-3 as dimensionality varies from 3D to 0D in the presence of the chiral molecule (cyclohexylethylamine, CHEA). A significant luminescence dissymmetry factor (glum) of ±5.6 × 10-4 is observed in the 0D CsPbBr3 NCs. Theoretical calculations using structural distortion parameters, the extent of charge transfer, and electrostatic potential profiles have revealed that the most significant enhancement of the chirality transfer occurs from the CHEA molecules to 0D NCs, and the order of chirality transfer from CHEA to CsPbBr3 NCs is 0D (quantum dots) > 2D (nanoplatelet) > 3D (cubic).

2.
Angew Chem Int Ed Engl ; : e202408908, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058220

RESUMEN

Pauling's third empirical rule deals with the cationic repulsion due to proximity in the face or edge shared polyhedra in a crystal structure, can bring about the lattice instability required to suppress the lattice thermal conductivity (κL). Here, we demonstrate the presence of such instability in TlAgSe, leading to a ultra-low κL of 0.17 W/m.K at 573 K. Our study reveals the instability arising from Ag-Ag repulsion within edge-shared AgSe4 tetrahedra through investigation of the local structure using synchrotron X-ray pair distribution function (PDF)  and supported by density functional theory. We observe correlation between weakening in the Ag  and the Tl-sublattice, providing direct experimental evidence of Pauling's third rule. The correlated rattling of Ag and Tl induces a highly anharmonic lattice and low energy optical phonons, resulting in suppressed sound velocity and ultralow κL. The electronic origin of soft and anharmonic lattice is the presence of filled antibonding states in the valence band near the Fermi level constructed by Ag(4d)-Se(4p) and Tl(6s)-Se(4p) interactions. This work demonstrates that the evidence of dynamic distortion in a crystal lattice is governed by the third empirical rule given by Pauling, which can act as a potential new strategy for diminishing κL in crystalline solids.

3.
ACS Appl Mater Interfaces ; 16(28): 36392-36400, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38963227

RESUMEN

The electrochemical reduction of nitrate (NO3-) ions to ammonia (NH3) provides an alternative method to eliminate harmful NO3- pollutants in water as well as to produce highly valuable NH3 chemicals. The NH3 yield rate however is still limited to the µmol h-1 cm-2 range when dealing with dilute NO3- concentrations found in waste streams. Copper (Cu) has attracted much attention because of its unique ability to effectively convert NO3- to NH3. We have reported a simple and scalable electrochemical method to produce a Cu foil having its surface covered with a porous Cu nanostructure enriched with (100) facets, which efficiently catalyzes NO3- to NH3. The Cu(100)-rich electrocatalyst showed a very high NH3 production rate of 1.1 mmol h-1 cm-2 in NO3- concentration as low as 14 mM NO3-, which is 4-5 times higher than the best-reported values. Increasing the NO3- concentration (140 mM) resulted in an NH3 production yield rate of 3.34 mmol h-1 cm-2. The durability test conducted for this catalyst foil in a flow cell system showed greater than 100 h stability with a Faradaic efficiency greater than 98%, demonstrating its potential to be used on an industrially relevant scale. Further, density functional theory (DFT) calculations have been performed to understand the better catalytic activity of Cu(100) compared to Cu(111) facets toward NO3-RR.

4.
Chem Commun (Camb) ; 60(54): 6877-6880, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38873969

RESUMEN

Herein, we report the synthesis and catalytic application of a new N,N'-dineopentyl-1,2-phenylenediamine-based bismuthenium cation (3). 3 has been synthesized via the treatment of chlorobismuthane LBiCl [L = 1,2-C6H4{N(CH2tBu)}2] (2) with AgSbF6, and was further used as a robust catalyst for the cyanosilylation of ketones under mild reaction conditions. Experimental studies and DFT calculations were performed to understand the mechanistic pathway.

5.
ACS Appl Mater Interfaces ; 16(27): 35841-35851, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935613

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) and perovskites hold substantial promise for various optoelectronic applications such as light emission, photodetection, and energy harvesting. However, each of these materials possesses certain limitations that can be overcome by synergistically combining them to form heterostructures, thereby unveiling intriguing optical properties. In this study, we present an uncomplicated technique for crafting a van der Waals (vdW) heterojunction comprising monolayer WS2 and a Ruddlesden-Popper (RP) perovskite, namely (TEA)2PbI4. By utilizing ultrafast transient absorption (TA) spectroscopy, we explored the charge carrier dynamics within the WS2/(TEA)2PbI4 heterostructure. Our findings uncover a type-II band alignment in the heterostructure, facilitating rapid (within 260 fs) hole transfer from WS2 to the perovskite and leading to the formation of interlayer excitons (IXs) with a much longer lifetime (728 ps). This strategic approach has the potential to contribute to the development of hybrid systems aimed at achieving high-performance optoelectronic devices.

6.
Chemistry ; 30(26): e202303411, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38441342

RESUMEN

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range. These organic compounds exhibited four different stable redox states (dication, radical cation, neutral and radical anion), and all of them were characterized either by single crystal X-ray study and/or various spectroscopic studies. Three of the four redox states are stable to air and moisture. The availability of stable multiple redox states demonstrated promise towards their efficacy in the symmetric H-cell charge/discharge cycling. Among various redox states, the dication/neutral state works efficiently and continuously for 1500 cycles in 2e- charge/discharge process outside glovebox in commercially available DMF with minimum capacity loss (retaining nearly 90 % Coulombic efficiency). Surprisingly, the efficiency of the redox cycle was retained even if the system was exposed to air for 30 days when it slowly regenerated to the initial deep blue radical cation, and it exhibited another 100 charge/discharge cycles with a minimal capacity loss. Such a stable H-cell cycling ability is not well known among organic molecule-based systems.

7.
Angew Chem Int Ed Engl ; 63(22): e202403697, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38512122

RESUMEN

The energy barrier to dissociate neutral water has been lowered by the differential intermediate binding on the charge-modulated metal centers of Co85Mo15 sheets supported on Ni-foam (NF), where the overpotential for hydrogen evolution reaction (HER) in 1 M phosphate buffer solution (PBS) is only 50±9 mV at -10 mA cm-2. It has a turnover frequency (TOF) of 0.18 s-1, mass activity of 13.2 A g-1 at -200 mV vs. reversible hydrogen electrode (RHE), and produces 16 ml H2 h-1 at -300 mV vs. RHE, more than double that of 20 % Pt/C. The Moδ+ and Coδ- sites adsorb OH*, and H*, respectively, and the electron injection from Co to H-O-H cleaves the O-H bond to form the Mo-OH* intermediate. Operando spectral analyses indicate a weak H-bonded network for facilitating the H2O*/OH* transport, and a potential-induced reversal of the charge density from Co to the more electronegative Mo, because of the electron withdrawing Co-H* and Mo-OH* species. Co85Mo15/NF can also drive the complete electrolysis of neutral water at only 1.73 V (10 mA cm-2). In alkaline, and acidic media, it demonstrates a Pt-like HER activity, accomplishing -1000 mA cm-2 at overpotentials of 161±7, and 175±22 mV, respectively.

8.
Phys Chem Chem Phys ; 26(12): 9340-9349, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38444311

RESUMEN

Designing an n-type thermoelectric material with a high thermoelectric figure of merit at near room temperature is extremely challenging. Generally, pristine Ag2Se reveals unusually low thermal conductivity along with a high electrical conductivity and Seebeck coefficient, which leads to high thermoelectric performance (n-type) at room temperature. Herein, we report a pseudo-ternary phase (Ag2Se0.5Te0.25S0.25) that exhibits significantly high thermoelectric performance (zT ∼ 2.1) even at 400 K. First-principles calculation reveals that the Rashba type of spin-dependent band spitting, which originates due to sulfur and tellurium substitution, helps to improve the thermopower magnitude. We also show that the intrinsic carrier mobility is not only controlled by the carrier effective mass but is substantially limited by longitudinal acoustic and optical phonon modes, which is an extension of the deformation potential theory. Locally off-center sulfur atoms, together with the increase in configurational entropy via substitution of Te and S atoms in Ag2Se, lead to a drastic reduction in the lattice thermal conductivity (klat ∼ 0.34 W m-1 K-1 at 400 K). The Rashba effect coupled with the configurational entropy synergistically results in a high thermoelectric figure of merit in the n-type thermoelectric material working in the near-room-temperature regime.

9.
J Phys Chem Lett ; 14(49): 10900-10909, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38033173

RESUMEN

This work highlights the significance of dielectric confinements and exciton binding energy of hybrid layered perovskites (LPs) in controlling the carrier relaxation dynamics of LPs for designing efficient optoelectronic devices. The polarizability of organic spacer cations in LPs modulates the carrier-phonon and carrier-carrier interactions, which eventually control the carrier relaxation dynamics. Here, we have varied the alkyl-ammonium chain length in the LPs to change the dielectric confinement, and the first-principles calculations reveal that the long-chain organic spacer experiences stronger dielectric confinement in comparison to short-chain organic spacer cation-based LPs. Transient absorption spectroscopic analysis suggests that the larger dielectric confinement and higher exciton binding energy exhibit faster carrier relaxation dynamics. The enhanced exciton-phonon interaction leads to faster carrier relaxation dynamics. The much softer phonon modes are responsible for the higher up-conversion of acoustic modes to optical modes, which leads to slower carrier relaxation dynamics in n-butylamine (BA) based LPs.

10.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37811821

RESUMEN

Monolayer HfSe2, in the family of transition metal dichalcogenides (TMDCs), is a potential thermoelectric candidate due to its low thermal conductivity. While its mobility remains low as in other 2D TMDCs is inconceivable for electronic and thermoelectric applications. Earlier theoretical attempts have failed to give justification for the orders of low experimental mobility obtained for monolayer HfSe2. We calculate the carrier mobility in the framework of the density functional perturbation theory in conjunction with the Boltzmann transport equation and correctly ascertain the experimental value. We also calculate the carrier mobility with the previously employed method, the deformation potential (DP) model, to figure out the reason for its failure. We found that it is the strong electron-optical phonon interaction that is causing the low mobility. As the DP model does not account for the optical phonons, it overestimates the relaxation time by an order of two and also underestimates the temperature dependence of mobility. A strong polar type interaction is evidenced as a manifestation of a discontinuity in the first derivative of the optical-phonons at the K and Γ points as well as a dispersive optical phonon at the K point. We also included the spin-orbit coupling which leads to an energy splitting of ∼330 meV and significantly affects mobility and scattering rates.

11.
Chem Sci ; 14(36): 9770-9779, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736622

RESUMEN

New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.

12.
ACS Appl Mater Interfaces ; 15(23): 27893-27904, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265435

RESUMEN

The efficient electrochemical conversion and storage devices can be boosted by the development of cost-effective and durable electrocatalysts. However, simultaneous in-depth understanding of the reaction mechanism is also required. Herein, we report the preparation, characterization, and electrochemical activities of bimetallic NixCo1-x NPs and core-shell NixCo1-x@NixCo1-xO NPs stabilized on N-doped carbon nanotubes (NCNTs). The electrocatalyst is derived from a bimetallic MOF {[Ni0.5Co0.5(bpe)2(N(CN)2)](N(CN)2)·(5H2O)}n (1) via pyrolysis followed by calcination. Pyrolysis of the bimetallic MOF gives rise to bimetallic nanoparticles stabilized on NCNTs, which, when subsequently calcined, leads to the formation of a core-shell structure with a semiconducting oxide shell (NixCo1-xO) encapsulating the NixCo1-x bimetallic NP core. Detailed evaluation of the electrocatalytic performance of NixCo1-x@NixCo1-xO/NCNT proves its worth as a bifunctional catalyst with 380 mV overpotential for oxygen evolution reaction at 10 mA cm-2 current density and 0.87 V (vs RHE) onset for oxygen reduction reaction in the alkaline medium. Additionally, the prepared electrocatalyst efficiently catalyzes the hydrogen evolution reaction with a nominal overpotential of 74 mV (vs RHE) for reaching 10 mA cm-2 current density in acidic medium. The practical applicability of this catalyst is further upheld in the fabrication of a zinc-air battery having high specific capacity with high round-trip efficiency and adequate cycle life. DFT calculations establish that the structure of NixCo1-x@NixCo1-xO/NCNT is crucial for its electrochemical activity since it has the threefold advantages of cooperative charge transfer from Co to Ni, synergistic relationship between the conductive alloy core and semiconducting oxide shell, and a highly conductive N-doped CNT matrix.

13.
Phys Chem Chem Phys ; 25(23): 15788-15797, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37254706

RESUMEN

CO2 reduction to value-added chemicals turns out to be a promising and efficient approach to resolve the increasing energy crisis and global warming. However, the catalytic efficiency of CO2 reduction reaction (CO2RR) to form C1 products (CO, HCOOH, CH3OH, CH4) needs to be quite efficient. Herein with the help of density functional theory, CO2RR towards C1 products was investigated on a transition metal (TM = Fe, Co, Ni) embedded C6N6 framework. The stable geometry of the catalysts, CO2 adsorption configurations, and CO2RR mechanisms were systematically studied for all the systems considered. The possible different adsorption configurations and adsorption energy calculations indicated that CO2 could be chemically adsorbed on the Co@C6N6 system. On the other hand, physical adsorption of CO2 is more preferable on Fe@C6N6 and Ni@C6N6 systems. As a competitive reaction, hydrogen evolution reaction (HER) was investigated and the systems were found to show more selectivity for CO2RR than for HER. OCHO formation turned out to be more favorable than COOH formation as initial protonation intermediates for CO2RR on the TM@C6N6 systems. The present work demonstrates that the Co@C6N6 catalyst can favor the electrocatalytic CO2RR among all systems. In addition, the photocatalytic activity of the systems was also investigated. The systems are found to be active for photoreduction of CO2 to CH3OH and CH4 in the presence of reducing agents such as H2 and H2O as they possess appropriate absorption spectrum in the visible region as well as suitable band edge positions. These findings open a way for designing single atom catalysts for important catalytic reactions.

14.
Angew Chem Int Ed Engl ; 62(18): e202301269, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36880387

RESUMEN

The immiscibility of crystallographic facets in multi-metallic catalysts plays a key role in driving the green H2 production by water electrolysis. The lattice mismatch between tetragonal In and face-centered cubic (fcc) Ni is 14.9 % but the mismatch with hexagonal close-packed (hcp) Ni is 49.8 %. Hence, in a series of Ni-In heterogeneous alloys, In is selectively incorporated in the fcc Ni. The 18-20 nm Ni particles have 36 wt % fcc phase, which increases to 86 % after In incorporation. The charge transfer from In to Ni, stabilizes the Ni0 state and In develops a fractional positive charge that favors *OH adsorption. With only 5 at% In, 153 mL h-1 H2 is evolved at -385 mV with mass activity of 57.5 A g-1 at-400 mV, 200 h stability at -0.18 V versus reversible hydrogen electrode (RHE), and Pt-like activity at high current densities, due to the spontaneous water dissociation, lower activation energy barrier, optimal adsorption energy of OH- ions and the prevention of catalyst poisoning.

15.
Chem Sci ; 14(11): 3056-3069, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36937581

RESUMEN

The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni73Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and vice versa. The reverse charge distribution in Ni73Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s-1 turnover frequency at -33 ± 10 and -54 ± 8 mV versus the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g-1 at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O2 s-1 turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm-2.

16.
Org Lett ; 25(11): 1799-1804, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36662600

RESUMEN

Herein we report the development of a new methodology for the synthesis of various quinodimethane derivatives under two-electron oxidation of bis-N-heterocyclic olefins linked by different π-conjugated aromatic spacers. In case of para- and ortho-phenylene bridge, we obtained air and moisture stable diimidazolium para- and ortho-quinodimethane derivatives. Analogues of the para-phenylene spacer such as tetrafluoro-p-phenylene and p-anthracene also led to the corresponding air and moisture stable quinodimethane derivatives. This emphasizes the influence of imidazolium substituents which facilitate the air and moisture stability of the quinodimethane derivatives. Differences were observed for the electron transfer processes: two one-electron vs one two-electron redox transitions between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes depending on the employed π-conjugated aromatic spacer. The formation of the π-conjugated radical-cations, transient redox intermediates between bis-N-heterocyclic olefins and diimidazolium-quinodimethanes, was addressed by an EPR investigation.

17.
Chemphyschem ; 24(8): e202200753, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36495016

RESUMEN

Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1 π-π* ) and high energy 3 n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0 , which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with -OMe (Me=Methyl) or -F substitution at 2 or 2' positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC ). For unsubstituted thioxanthone and for isopropyl substitution at 2' position, the S1 -T1 gap is slightly positive ( Δ E S 1 - 3 n π * ${\Delta {E}_{{S}_{1}-{}^{3}n{\rm \pi }{\rm {^\ast}}}}$ ), rendering a lower triplet harvesting efficiency. For systems with -OMe or -F substitution at 3 or 3' position of thioxanthone, because of buried π state and high energy π* state, the S1 -3 nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.

18.
Chemphyschem ; 24(1): e202200453, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36094278

RESUMEN

The development of cheap, eco-friendly electrocatalysts for urea synthesis which avoids the traditional nitrogen reduction to form ammonia, is very important to meet our growing demand for urea. Herein, based on density functional theory, we propose a novel electrocatalyst (dual Si doped C9 N4 nanosheet) composed of totally environmentally benign non-metal earth abundant elements, which is able to adsorb N2 and CO2 together. Reduction of CO2 to CO happens, which is then inserted into activated N-N bond, and it produces *N(CO)N intermediate, which is the crucial step for urea formation. Eventually following several proton coupled electron transfer processes, urea is formed under ambient conditions. The limiting potential value for urea formation is found to be lower than that of NH3 formation and HER (hydrogen evolution reaction). Moreover, the faradaic efficiency of our proposed catalyst system is 100 % for urea formation, which suggests greater selectivity of urea formation over other competitive reactions.


Asunto(s)
Dióxido de Carbono , Silicio , Amoníaco , Transporte de Electrón , Hidrógeno , Metales
19.
Chem Sci ; 13(42): 12533-12539, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36382295

RESUMEN

The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.

20.
Angew Chem Int Ed Engl ; 61(51): e202213614, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259383

RESUMEN

An extended class of stable mesoionic N-heterocyclic imines (mNHIs), containing a highly polarized exocyclic imine moiety, were synthesized. The calculated proton affinities (PA) and experimentally determined Tolman electronic parameters (TEPs) reveal that these synthesized mNHIs have the highest basicity and donor ability among NHIs reported so far. The superior nucleophilicity of newly designed mNHIs was utilized in devising a strategy to incorporate CO2 as a bridging unit under reductive conditions to couple inert primary amides. This strategy was further extended to hetero-couplings between amide and amine using CO2 . These hitherto unknown catalytic transformations were introduced in the diversification of various biologically active drug molecules under metal-free conditions. The underlying mechanism was explored by performing a series of control experiments, characterizing key intermediates using spectroscopic and crystallographic techniques.


Asunto(s)
Amidas , Iminas , Iminas/química , Amidas/química , Dióxido de Carbono/química , Catálisis , Aminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA