Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Infect Public Health ; 17(9): 102510, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39088990

RESUMEN

BACKGROUND: Nonspecific acute tropical febrile illnesses (NEATFI) are common in the Latin American tropics. Dengue, Chikungunya, Zika, Mayaro, and Usutu, among others, can coexist in the American tropics. This study aimed to surveil the arboviruses that cause| acute febrile syndrome in patients in the Meta department, Colombia. METHODS: Between June 2021 and February 2023, an epidemiological surveillance study was conducted in the Llanos of the Meta department in Eastern Colombia. RESULTS: One hundred patients in the acute phase with typical prodromal symptoms of NEATFI infection who attended the emergency department of the Villavicencio Departmental Hospital were included. ELISA tests were performed for Dengue, Usutu, Chikungunya, and Mayaro. RT-qPCR was performed to detect the arboviruses Usutu, Dengue, Zika, Mayaro, and Oropouche. The seroprevalence for the Chikungunya, Mayaro, and Usutu viruses was 41 % (28/68), 40 % (27/67), and 62 % (47/75), respectively. Seroconversion for Chikungunya was observed in one patient; two seroconverted to Mayaro and one to Usutu. The NS5 gene fragment of the Usutu virus was detected in nine febrile patients. RT-qPCR of the remaining arboviruses was negative. The clinical symptoms of the nine Usutu-positive patients were very similar to those of Dengue, Chikungunya, Zika, and Mayaro infections. CONCLUSIONS: The pervasive detection of unexpected viruses such as Usutu and Mayaro demonstrated the importance of searching for other viruses different from Dengue. Because Usutu infection and Mayaro fever have clinical features like Dengue, a new algorithm should be proposed to improve the accuracy of acute tropical fevers.


Asunto(s)
Infecciones por Arbovirus , Arbovirus , Monitoreo Epidemiológico , Humanos , Colombia/epidemiología , Masculino , Femenino , Arbovirus/aislamiento & purificación , Arbovirus/genética , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Infecciones por Arbovirus/diagnóstico , Adulto , Adolescente , Adulto Joven , Persona de Mediana Edad , Estudios Seroepidemiológicos , Fiebre/epidemiología , Fiebre/virología , Niño , Anticuerpos Antivirales/sangre , Preescolar , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/diagnóstico , Anciano , Ensayo de Inmunoadsorción Enzimática
2.
Parasitol Res ; 123(4): 181, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602595

RESUMEN

Chagas disease (CD), caused by the complex life cycle parasite Trypanosoma cruzi, is a global health concern and impacts millions globally. T. cruzi's genetic variability is categorized into discrete typing units (DTUs). Despite their widespread presence in the Americas, a comprehensive understanding of their impact on CD is lacking. This study aims to analyze life cycle traits across life cycle stages, unraveling DTU dynamics. Metacyclogenesis curves were generated, inducing nutritional stress in epimastigotes of five DTUs (TcI (MG), TcI (DA), TcII(Y), TcIII, TcIV, and TcVI), resulting in metacyclic trypomastigotes. Infection dynamics in Vero cells from various DTUs were evaluated, exploring factors like amastigotes per cell, cell-derived trypomastigotes, and infection percentage. Statistical analyses, including ANOVA tests, identified significant differences. Varying onset times for metacyclogenesis converged on the 7th day. TcI (MG) exhibited the highest metacyclogenesis potential. TcI (DA) stood out, infecting 80% of cells within 24 h. TcI demonstrated the highest potential in both metacyclogenesis and infection among the strains assessed. Intra-DTU diversity was evident among TcI strains, contributing to a comprehensive understanding of Trypanosoma cruzi dynamics and genetic diversity.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Chlorocebus aethiops , Animales , Trypanosoma cruzi/genética , Células Vero , Fenotipo
3.
Heliyon ; 10(5): e27452, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463823

RESUMEN

The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.

4.
PLoS Negl Trop Dis ; 18(3): e0012029, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478569

RESUMEN

Cutaneous Leishmaniasis (CL) is a tropical disease characterized by cutaneous ulcers, sometimes with satellite lesions and nodular lymphangitis. Leishmania parasites, transmitted by sandfly vectors, cause this widespread public health challenge affecting millions worldwide. CL's complexity stems from diverse Leishmania species and intricate host interactions. Therefore, this study aims to shed light on the spatial-temporal distribution of Leishmania species and exploring the influence of skin microbiota on disease progression. We analyzed 40 samples from CL patients at three military bases across Colombia. Using Oxford Nanopore's Heat Shock Protein 70 sequencing, we identified Leishmania species and profiled microbiota in CL lesions and corresponding healthy limbs. Illumina sequencing of 16S-rRNA and 18S-rRNA genes helped analyze prokaryotic and eukaryotic communities. Our research uncovered a spatial-temporal overlap between regions of high CL incidence and our sampling locations, indicating the coexistence of various Leishmania species. L. naiffi emerged as a noteworthy discovery. In addition, our study delved into the changes in skin microbiota associated with CL lesions sampled by scraping compared with healthy skin sampled by brushing of upper and lower limbs. We observed alterations in microbial diversity, both in prokaryotic and eukaryotic communities, within the lesioned areas, signifying the potential role of microbiota in CL pathogenesis. The significant increase in specific bacterial families, such as Staphylococcaceae and Streptococcaceae, within CL lesions indicates their contribution to local inflammation. In essence, our study contributes to the ongoing research into CL, highlighting the need for a multifaceted approach to decipher the intricate interactions between Leishmaniasis and the skin microbiota.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Psychodidae , Úlcera Cutánea , Animales , Humanos , Leishmaniasis Cutánea/epidemiología , Leishmania/genética , Piel/patología , Psychodidae/parasitología
5.
Parasit Vectors ; 16(1): 458, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111024

RESUMEN

BACKGROUND: Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. METHODS: A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. RESULTS: The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. CONCLUSIONS: This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.


Asunto(s)
Enfermedades de los Gatos , Coinfección , Enfermedades de los Perros , Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Secuenciación de Nanoporos , Humanos , Animales , Perros , Gatos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Leishmania/genética , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/veterinaria , Proteínas HSP70 de Choque Térmico/genética
7.
Acta Trop ; 242: 106901, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940857

RESUMEN

Transmission of cutaneous leishmaniasis in Venezuela reveals diverse and changing epidemiological landscapes, as well as a spectrum of clinical phenotypes presumed to be linked to a variety of Leishmania species. Central-western Venezuela constitutes one of the highest endemic epicenters in the country, and updated molecular epidemiological information is still lacking. Therefore, in this study we aimed to characterize the landscape of circulating Leishmania species across central-western Venezuela through the last two decades, performed comparisons of haplotype and nucleotide diversity, and built a geospatial map of parasite species distribution. A total of 120 clinical samples were collected from patients across the cutaneous disease spectrum, retrieving parasitic DNA, and further characterizing by PCR and sequencing of the HSP70 gene fragment. This data was later collated with further genetic, geospatial and epidemiological analyses. A peculiar pattern of species occurrence including Leishmania (Leishmania) amazonensis (77.63% N=59), Leishmania (Leishmania) infantum (14.47% N=11), Leishmania (Viannia) panamensis (5.26% N=4) and Leishmania (Viannia) braziliensis (2.63% N=2) was revealed, also highlighting a very low genetic diversity amongst all analyzed sequences. Geographical distribution showed that most cases are widely distributed across the greater urban-sub urban area of the Irribaren municipality. L.(L.) amazonensis appears to be widely dispersed throughout Lara state. Statistical analyses failed to reveal significance for any comparisons, leading to conclude a lack of association between the infective Leishmania species and clinical phenotypes. To the best of our knowledge, this is an unprecedented study which addresses comprehensively the geographical distribution of Leishmania species in central-western Venezuela throughout the last two decades, and the first to incriminate L. (L.) infantum as an etiologic agent of cutaneous leishmaniasis in this region. Our findings support that Leishmania endemism in central-western Venezuela is caused mainly by L.(L.) amazonensis. Future studies are needed to unveil additional details on the ecological intricacies and transmission aspects of leishmaniasis (i.e. sampling phlebotomines and mammals) and to adopt adequate public health prevention and control strategies and mitigate disease impact in this endemic region.


Asunto(s)
Leishmania braziliensis , Leishmania guyanensis , Leishmania infantum , Leishmaniasis Cutánea , Animales , Leishmania infantum/genética , Venezuela/epidemiología , Leishmaniasis Cutánea/epidemiología , Leishmania braziliensis/genética , Leishmania guyanensis/genética , Mamíferos
8.
J Fungi (Basel) ; 9(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36836249

RESUMEN

Cryptococcus neoformans species complexes are recognized as environmental fungi responsible for lethal meningoencephalitis in immunocompromised individuals. Despite the vast knowledge about the epidemiology and genetic diversity of this fungus in different regions of the world, more studies are necessary to comprehend the genomic profiles across South America, including Colombia, considered to be the second country with the highest number of Cryptococcosis. Here, we sequenced and analyzed the genomic architecture of 29 Colombian C. neoformans isolates and evaluated the phylogenetic relationship of these strains with publicly available C. neoformans genomes. The phylogenomic analysis showed that 97% of the isolates belonged to the VNI molecular type and the presence of sub-lineages and sub-clades. We evidenced a karyotype without changes, a low number of genes with copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs). Additionally, a difference in the number of SNPs between the sub-lineages/sub-clades was observed; some were involved in crucial fungi biological processes. Our study demonstrated the intraspecific divergence of C. neoformans in Colombia. These findings provide evidence that Colombian C. neoformans isolates do not probably require significant structural changes as adaptation mechanisms to the host. To the best of our knowledge, this is the first study to report the whole genome sequence of Colombian C. neoformans isolates.

10.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748878

RESUMEN

Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Aneuploidia , Enfermedad de Chagas/parasitología , Variación Genética , Humanos , Pérdida de Heterocigocidad , Trypanosoma cruzi/genética
11.
Sci Rep ; 12(1): 7880, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551247

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has evolved to have a wide range of hosts, including non-human primates, wild and domestic animals. The ACE2 protein has a high level of conservation and is the common receptor invertebrate species for a viral infection to occur; this receptor could give rise to anthroponotic events. This article describes the first event of symptomatic transmission in Latin America from a human to a dog by the B.1.625 lineage of SARS-CoV-2. We found 21 shared mutations in the complete genomes of viral sequences from owners and dogs. Further phylogenetic and molecular analysis showed that 100% co-localization of the clade helps to understand human-animal transmission. Prediction of the Spike protein structure of the sequenced virus and docking analyzes showed that the E484K mutation in the receptor-binding domain (RBD) could contribute to the viral affinity of dACE2. Therefore, close contact between SARS-CoV-2-infected humans and pets should be avoided to prevent the emergence of novel mutations of public health importance from anthroponotic events.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Animales Domésticos/metabolismo , Colombia/epidemiología , Perros , Humanos , Mutación , Pandemias , Filogenia , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
One Health ; 14: 100363, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34931174

RESUMEN

Due to the necessity to control human-to-human spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the overwhelming majority of the generated data on this virus was solely related to the genomic characteristics of strains infecting humans; conversely, this work aimed to recover and analyze the diversity of viral genomes from non-human sources. From a set of 3595 publicly available SARS-CoV-2 genome sequences, 128 lineages were identified in non-human hosts, the majority represented by the variants of concern Delta (n = 1105, 30.7%) and Alpha (n = 466, 12.9%), followed by B.1.1.298 lineage (n = 458, 12.7%). Environment, Neovison vison, Odocoileus virginianus and Felis catus were the non-human sources with the highest number of lineages (14, 12 and 10, respectively). Phylogenomic analyses showed viral clusters from environmental sources, N. vison, O. virginianus, Panthera tigris, and Panthera leo. These clusters were collectively related to human viruses as well as all other non-human sources that were heterogeneously distributed in the phylogenetic tree. Further, the genetic details of viral genomes from bats and pangolins were independently investigated owing to their high divergence, revealing five distinct clusters. Cluster 4 exclusively included bat-sourced genomes and the SARS-CoV-2 reference strain Wuhan-01. In summary, this study identified new genetic landmarks of SARS-CoV-2 evolution. We propose potential interspecies transmission routes of SARS-CoV-2 between animals and humans, which should be considered in order to establish better pathogen surveillance and containment strategies.

13.
Parasit Vectors ; 14(1): 419, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419127

RESUMEN

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS: We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS: Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION: Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.


Asunto(s)
Antimonio/farmacología , Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , Leishmania/efectos de los fármacos , Leishmania/genética , Transcriptoma/efectos de los fármacos , Antimonio/química , Antiprotozoarios/química , Leishmania/clasificación , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Proteínas Protozoarias/genética
14.
PLoS Negl Trop Dis ; 15(4): e0009327, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857136

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic has forced health authorities across the world to take important decisions to curtail its spread. Genomic epidemiology has emerged as a valuable tool to understand introductions and spread of the virus in a specific geographic location. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the sequences of 59 SARS-CoV-2 samples from inhabitants of the Colombian Amazonas department. The viral genomes were distributed in two robust clusters within the distinct GISAID clades GH and G. Spatial-temporal analyses revealed two independent introductions of SARS-CoV-2 in the region, one around April 1, 2020 associated with a local transmission, and one around April 2, 2020 associated with other South American genomes (Uruguay and Brazil). We also identified ten lineages circulating in the Amazonas department including the P.1 variant of concern (VOC). CONCLUSIONS/SIGNIFICANCE: This study represents the first genomic epidemiology investigation of SARS-CoV-2 in one of the territories with the highest report of indigenous communities of the country. Such findings are essential to decipher viral transmission, inform on global spread and to direct implementation of infection prevention and control measures for these vulnerable populations, especially, due to the recent circulation of one of the variants of concern (P.1) associated with major transmissibility and possible reinfections.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , COVID-19/etnología , COVID-19/transmisión , Colombia/epidemiología , Humanos , Indígenas Sudamericanos , SARS-CoV-2/genética , Análisis Espacial , Factores de Tiempo
15.
Parasit Vectors ; 13(1): 255, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410662

RESUMEN

BACKGROUND: Severe changes in temperature can affect the behavior and ecology of some infectious agents. Trypanosoma cruzi is a protozoan that causes Chagas disease. This parasite has high genetic variability and can be divided into six discrete typing units (DTUs). Trypanosoma cruzi also has a complex life-cycle, which includes the process of metacyclogenesis when non-infective epimastigote forms are differentiated into infective metacyclic trypomastigotes (MT). Studies in triatomines have shown that changes in temperature also affect the number and viability of MT. METHODS: The objective of this study was to evaluate how temperature affects the transcriptional profiles of T. cruzi I and II (TcI and TcII) MT by exposing parasites to two temperatures (27 °C and 28 °C) and comparing those to normal culture conditions at 26 °C. Subsequently, RNA-seq was conducted and differentially expressed genes were quantified and associated to metabolic pathways. RESULTS: A statistically significant difference was observed in the number of MT between the temperatures evaluated and the control, TcII DTU was not strongly affected to exposure to high temperatures compared to TcI. Similar results were found when we analyzed gene expression in this DTU, with the greatest number of differentially expressed genes being observed at 28 °C, which could indicate a dysregulation of different signaling pathways under this temperature. Chromosome analysis indicated that chromosome 1 harbored the highest number of changes for both DTUs for all thermal treatments. Finally, gene ontology (GO) analyses showed a decrease in the coding RNAs involved in the regulation of processes related to the metabolism of lipids and carbohydrates, the evasion of oxidative stress, and proteolysis and phosphorylation processes, and a decrease in RNAs coding to ribosomal proteins in TcI and TcII, along with an increase in the expression of surface metalloprotease GP63 in TcII. CONCLUSIONS: Slight temperature shifts lead to increased cell death of metacyclic trypomastigotes because of the deregulation of gene expression of different processes essential for the TcI and TcII DTUs of T. cruzi.


Asunto(s)
Redes y Vías Metabólicas/genética , Temperatura , Transcriptoma , Trypanosoma cruzi/genética , Perfilación de la Expresión Génica , Estadios del Ciclo de Vida , RNA-Seq
16.
Infect Genet Evol ; 64: 135-138, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29936036

RESUMEN

We report the species detected in dogs and humans from outbreaks of visceral leishmaniasis in Colombia. In this study, 91 sera from patients (n = 38) and dogs (n = 53) diagnosed with visceral leishmaniasis using IFAT were analyzed to determine the causative species. DNA extraction, PCR amplification, DNA sequencing and species identification was performed. Results were obtained with 13 of the sera. A phylogenetic tree and a network of haplotypes were constructed. Leishmania infantum chagasi (11/13), Leishmania braziliensis (1/13) and Leishmania amazonensis (1/13) were identified as the circulating species and genetic variability in one of the L. infantum chagasi strains was demonstrated. This is the first study describing Leishmania species in outbreaks of visceral leishmaniasis in Colombia.


Asunto(s)
Brotes de Enfermedades , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/parasitología , Leishmania donovani , Leishmaniasis Visceral/epidemiología , Animales , Colombia/epidemiología , Perros , Haplotipos , Humanos , Leishmania donovani/clasificación , Leishmania donovani/genética , Filogenia , Reacción en Cadena de la Polimerasa
17.
Infect Genet Evol ; 49: 273-282, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28179142

RESUMEN

The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.


Asunto(s)
Interacciones Huésped-Parásitos , Leishmania/genética , Estadios del Ciclo de Vida/genética , ARN Protozoario/genética , Transcriptoma , Trypanosoma brucei brucei/genética , Animales , Dípteros/parasitología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Insectos Vectores/parasitología , Leishmania/crecimiento & desarrollo , Macrófagos/parasitología , Análisis por Micromatrices , Trypanosoma brucei brucei/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA