Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36826874

RESUMEN

Polyelectrolyte layer-by-layer (LbL) films on pretreated Mg containing 3 wt.% Al and 1 wt.% Zn (MgAZ31) alloy surfaces were prepared under physiological conditions offering improved bioresponse and corrosive protection. Pretreatments of the model MgAZ31 substrate surfaces were performed by alkaline and fluoride coating methods. The anti-corrosion and cytocompatibility behavior of pretreated substrates were evaluated. The LbL film assembly consisted of an initial layer of polyethyleneimine (PEI), followed by alternate layers of poly (lactic-co-glycolic acid) (PLGA) and poly (allylamine hydrochloride) (PAH), which self-arrange via electrostatic interactions on the pretreated MgAZ31 alloy substrate surface. The physicochemical characterization, surface morphologies, and microstructures of the LbL films were investigated using Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The in vitro stability studies related to the LbL coatings confirmed that the surface treatments are imperative to achieve the lasting stability of PLGA/PAH layers. Electrochemical impedance spectroscopy measurements demonstrated that pretreated and LbL multilayered coated substrates enhanced the corrosion resistance of the bare MgAZ31 alloy. Cytocompatibility studies using human mesenchymal stem cells seeded directly over the substrates showed that the pretreated and LbL-generated surfaces were more cytocompatible, displaying reduced cytotoxicity than the bare MgAZ31. The release of bovine serum albumin protein from the LbL films was also studied. The initial data presented cooperatively demonstrate the promise of creating LbL layers on Mg-related bioresorbable scaffolds to obtain improved surface bio-related activity.

2.
ACS Biomater Sci Eng ; 2(5): 712-721, 2016 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-33440568

RESUMEN

In this study, we explored the capability of tartrate resistant acid phosphatase (TRAcP), a bone resorption marker, to degrade carboxylated single-walled carbon nanotubes (C-SWCNTs). Optical observations and Raman and high-resolution transmission electron microscopy studies show that the enzyme contributes to the degradation of C-SWCNTs, although the degradation is not complete. Molecular modeling implemented to investigate the binding sites for carboxylated and pristine SWCNTs to TRAcP elucidate the varying proximity of SWCNTs to the binuclear iron active site and the active site residues of TRAcP, which is clearly dependent upon the degree of carboxylation introduced into the SWCNT model. The modeling results presented provide justification to the propensity of TRAcP to degrade the C-SWCNTs alluding to the possibility of C-SWCNTs to be used as a potential degradable biomaterial for use in therapeutic applications of mineralized tissue related conditions.

3.
Biosens Bioelectron ; 77: 580-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26476598

RESUMEN

C-terminal telopeptide (cTx), a fragment generated during collagen degradation, is a key biomarker of bone resorption during the bone remodeling process. The presence of varying levels of cTx in the bloodstream can hence be indicative of abnormal bone metabolism. This study focuses on the development of an immunosensor utilizing carbon nanotube (CNT) electrodes coated with gold nanoparticles for the detection of cTx, which could ultimately lead to the development of an inexpensive and rapid point-of-care (POC) tool for bone metabolism detection and prognostics. Electrochemical impedance spectroscopy (EIS) was implemented to monitor and detect the antigen-antibody binding events occurring on the surface of the gold-deposited CNT electrode. Type I cTx was used as the model protein to test the developed sensor. The sensor was accordingly characterized at various stages of development for evaluation of the optimal sensor performance. The biosensor could detect cTx levels as low as 0.05 ng/mL. The feasibility of the sensor for point-of-care (POC) applications was further demonstrated by determining the single frequency showing maximum changes in impedance, which was determined to be 18.75 Hz.


Asunto(s)
Huesos/metabolismo , Colágeno Tipo I/metabolismo , Conductometría/instrumentación , Oro/química , Microelectrodos , Nanotubos de Carbono/química , Péptidos/metabolismo , Animales , Biomarcadores/metabolismo , Materiales Biocompatibles Revestidos/síntesis química , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Nanotubos de Carbono/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Matrices Tisulares/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA