Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(31): 41616-41625, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052931

RESUMEN

Cu2O, CuO, and mixed phase Cu2O/CuO represent promising candidates for photoelectrochemical H2 evolution due to their strong visible light absorption, earth-abundance, and chemical stability. However, the photoelectrochemical efficiency in these materials remains far below the theoretical limit, largely due to poorly understood surface electron dynamics. These dynamics depend on defect states, such as Cu atom vacancies and phase boundaries, which control electron trapping, charge carrier separation, and recombination. In this work, we study the photoinduced electron and hole dynamics at the surface of various Cu oxides using ultrafast extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. In Cu2O we find that photoexcitation occurs as electron promotion from primarily Cu 3d valence band to Cu 4s conduction band states compared to O 2p valence band to Cu 4s conduction band states in CuO. In catalysts with a significant concentration of Cu vacancies, we observe fast electron trapping to the Cu 3d defect band occurring in less than 100 fs. In contrast, photoexcited electrons in phase pure CuO do not trap to midgap states; rather these electrons form small polarons within approximately 500 fs. Photoelectrochemical measurements of these catalysts show that Cu vacancy-mediated electron trapping correlates with a significant loss of photocurrent. Together, these results provide a detailed picture of the defect states and associated ultrafast carrier dynamics that govern the photocatalytic efficiency in widely studied Cu2O and CuO photocatalysts.

2.
J Phys Chem Lett ; 14(15): 3643-3650, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37027816

RESUMEN

CuO is often employed as a photocathode for H2 evolution and CO2 reduction, but observed efficiency is still far below the theoretical limit. To bridge the gap requires understanding the CuO electronic structure; however, computational efforts lack consensus on the orbital character of the photoexcited electron. In this study, we measure the femtosecond XANES spectra of CuO at the Cu M2,3 and O L1 edges to track the element-specific dynamics of electrons and holes. Results show that photoexcitation represents an O 2p to Cu 4s charge transfer state indicating the conduction band electron has primarily Cu 4s character. We also observe ultrafast mixing of Cu 3d and 4s conduction band states mediated by coherent phonons, with Cu 3d character of the photoelectron reaching a maximum of 16%. This is the first observation of the photoexcited redox state in CuO, and results provide a benchmark for theory where electronic structure modeling still relies heavily on model-dependent parametrization.

3.
Langmuir ; 35(4): 1008-1020, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30601000

RESUMEN

We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid.  The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA