Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Arrhythm Electrophysiol ; 17(1): e012454, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38146652

RESUMEN

BACKGROUND: There is a need for improved approaches to rhythm control therapy of atrial fibrillation (AF). METHODS: The effectiveness of flecainide (1.5 µmol/L) and ibutilide (20 nmol/L), alone and in combination, to cardiovert and prevent AF recurrence was studied in canine-isolated coronary-perfused right atrioventricular preparations. We also examined the safety of the combination of flecainide (1.5 µmol/L) and ibutilide (50 nmol/L) using canine left ventricular wedge preparations. RESULTS: Sustained AF (>1 hour) was inducible in 100%, 60%, 20%, and 0% of atria in the presence of acetylcholine alone, acetylcholine+ibutilide, acetylcholine+flecainide, and acetylcholine+ibutilide+flecainide, respectively. When used alone, flecainide and ibutilide cardioverted sustained AF in 40% and 20% of atria, respectively, but in 100% of atria when used in combination. Ibutilide prolonged atrial and ventricular effective refractory period by 15% and 8%, respectively, at a cycle length of 500 ms (P<0.05 for both). Flecainide increased the effective refractory period in atria by 27% (P<0.01) but by only 2% in the ventricles. The combination of the 2 drugs lengthened the effective refractory period by 42% in atria (P<0.01) but by only 7% (P<0.05) in the ventricles. In left ventricular wedges, ibutilide prolonged QT and Tpeak-Tend intervals by 25 and 55%, respectively (P<0.05 for both; cycle length, 2000 ms). The addition of flecainide (1.5 µmol/L) partially reversed these effects (P<0.05 for both parameters versus ibutilide alone). Torsades de Pointes score was relatively high with ibutilide alone and low with the drug combination. CONCLUSIONS: In our experimental model, a combination of flecainide and ibutilide significantly improves cardioversion and prevents the recurrence of AF compared with monotherapies with little to no risk for the development of long-QT-mediated ventricular proarrhythmia.


Asunto(s)
Fibrilación Atrial , Síndrome de QT Prolongado , Sulfonamidas , Animales , Perros , Flecainida/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/prevención & control , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Acetilcolina , Síndrome de QT Prolongado/tratamiento farmacológico
2.
PLoS One ; 18(5): e0281977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37159454

RESUMEN

BACKGROUND: Brugada (BrS) and early repolarization syndromes (ERS), the so-called J wave syndromes (JWS), are associated with life-threatening ventricular arrhythmias. Pharmacologic approaches to therapy are currently limited. In this study, we examine the effects of ARumenamide-787 (AR-787) to suppress the electrocardiographic and arrhythmic manifestations of JWS and hypothermia. METHODS: We studied the effects of AR-787 on INa and IKr in HEK-293 cells stably expressing the α- and ß1-subunits of the cardiac (NaV1.5) sodium channel and hERG channel, respectively. In addition, we studied its effect on Ito, INa and ICa in dissociated canine ventricular myocytes along with action potentials and ECG from coronary-perfused right (RV) and left (LV) ventricular wedge preparations. The Ito agonist, NS5806 (5-10 µM), ICa blocker, verapamil (2.5 µM), and INa blocker, ajmaline (2.5 µM), were used to mimic the genetic defects associated with JWS and to induce the electrocardiographic and arrhythmic manifestations of JWS (prominent J waves/ST segment elevation, phase 2 reentry and polymorphic VT/VF) in canine ventricular wedge preparations. RESULTS: AR-787 (1, 10 and 50 µM) exerted pleiotropic effects on cardiac ion channels. The predominant effect was inhibition of the transient outward current (Ito) and enhancement of the sodium channel current (INa), with lesser effects to inhibit IKr and augment calcium channel current (ICa). AR-787 diminished the electrocardiographic J wave and prevented and/or suppressed all arrhythmic activity in canine RV and LV experimental models of BrS, ERS and hypothermia. CONCLUSIONS: Our findings point to AR-787 as promising candidate for the pharmacologic treatment of JWS and hypothermia.


Asunto(s)
Hipotermia , Humanos , Animales , Perros , Células HEK293 , Síndrome , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Miocitos Cardíacos
5.
PLoS One ; 15(11): e0242747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232375

RESUMEN

BACKGROUND: J wave syndromes (JWS), including Brugada (BrS) and early repolarization syndromes (ERS), are associated with increased risk for life-threatening ventricular arrhythmias. Pharmacologic approaches to therapy are currently very limited. Here, we evaluate the effects of the natural flavone acacetin. METHODS: The effects of acacetin on action potential (AP) morphology and transient outward current (Ito) were first studied in isolated canine RV epicardial myocytes using whole-cell patch clamp techniques. Acacetin's effects on transmembrane APs, unipolar electrograms and transmural ECGs were then studied in isolated coronary-perfused canine RV and LV wedge preparations as well as in whole-heart, Langendorff-perfused preparations from which we recorded a 12 lead ECG and unipolar electrograms. Using floating glass microelectrodes we also recorded transmembrane APs from the RVOT of the whole-heart model. The Ito agonist NS5806, sodium channel blocker ajmaline, calcium channel blocker verapamil or hypothermia (32°C) were used to pharmacologically mimic the genetic defects and conditions associated with JWS, thus eliciting prominent J waves and provoking VT/VF. RESULTS: Acacetin (5-10 µM) reduced Ito density, AP notch and J wave area and totally suppressed the electrocardiographic and arrhythmic manifestation of both BrS and ERS, regardless of the experimental model used. In wedge and whole-heart models of JWS, increasing Ito with NS5806, decreasing INa or ICa (with ajmaline or verapamil) or hypothermia all resulted in accentuation of epicardial AP notch and ECG J waves, resulting in characteristic BrS and ERS phenotypes. Phase 2-reentrant extrasystoles originating from the RVOT triggered VT/VF. The J waves in leads V1 and V2 were never associated with a delay of RVOT activation and always coincided with the appearance of the AP notch recorded from RVOT epicardium. All repolarization defects giving rise to VT/VF in the BrS and ERS models were reversed by acacetin, resulting in total suppression of VT/VF. CONCLUSIONS: We present experimental models of BrS and ERS capable of recapitulating all of the ECG and arrhythmic manifestations of the JWS. Our findings provide definitive support for the repolarization but not the depolarization hypothesis proposed to underlie BrS and point to acacetin as a promising new pharmacologic treatment for JWS.


Asunto(s)
Síndrome de Brugada , Electrocardiografía , Flavonas/farmacología , Miocitos Cardíacos/metabolismo , Pericardio/metabolismo , Ajmalina/farmacología , Animales , Síndrome de Brugada/inducido químicamente , Síndrome de Brugada/tratamiento farmacológico , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatología , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Hipotermia/metabolismo , Hipotermia/patología , Hipotermia/fisiopatología , Compuestos de Fenilurea/farmacología , Tetrazoles/farmacología , Verapamilo/farmacología
6.
Circ Arrhythm Electrophysiol ; 11(9): e006511, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354293

RESUMEN

BACKGROUND: Early repolarization syndrome (ERS) is an inherited cardiac arrhythmia syndrome associated with sudden cardiac death. Approaches to therapy are currently very limited. This study probes the mechanisms underlying the electrocardiographic and arrhythmic manifestation of experimental models of ERS and of the ameliorative effect of radiofrequency ablation. METHODS: Action potentials, bipolar electrograms, and transmural pseudo-ECGs were simultaneously recorded from coronary-perfused canine left ventricular wedge preparations (n=11). The Ito agonist NS5806 (7-10 µmol/L), calcium channel blocker verapamil (3 µmol/L), and acetylcholine (1-3 µmol/L) were used to pharmacologically mimic the effects of genetic defects associated with ERS. RESULTS: The provocative agents induced prominent J waves in the ECG secondary to accentuation of the action potential notch in epicardium but not endocardium. Bipolar recordings displayed low-voltage fractionated potentials in epicardium because of temporal and spatial variability in appearance of the action potential dome. Concealed phase 2 reentry developed when action potential dome was lost at some epicardial sites but not others, appearing in the bipolar electrogram as discrete high-frequency spikes. Successful propagation of the phase 2 reentrant beat precipitated ventricular tachycardia/ventricular fibrillation. Radiofrequency ablation of the epicardium destroyed the cells displaying abnormal repolarization and thus suppressed the J waves and the development of ventricular tachycardia/ventricular fibrillation in 6/6 preparations. CONCLUSIONS: Our findings suggest that low-voltage fractionated electrical activity and high-frequency late potentials recorded from the epicardial surface of the left ventricle can identify regions of abnormal repolarization responsible for ventricular tachycardia/ventricular fibrillation in ERS and that radiofrequency ablation of these regions in left ventricular epicardium can suppress ventricular tachycardia/ventricular fibrillation by destroying regions of ER.


Asunto(s)
Potenciales de Acción , Ablación por Catéter/métodos , Frecuencia Cardíaca , Pericardio/cirugía , Taquicardia Ventricular/cirugía , Fibrilación Ventricular/cirugía , Animales , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Femenino , Masculino , Pericardio/fisiopatología , Síndrome , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Fibrilación Ventricular/fisiopatología
7.
Int J Cardiol ; 254: 195-202, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407091

RESUMEN

BACKGROUND AND PURPOSE: Previous studies revealed that Takotsubo cardiomyopathy (TTC), a transient disorder of ventricular dysfunction affecting predominantly postmenopausal women, is associated with acquired long QT syndrome and arrhythmias, but the exact pathophysiologic mechanism is unknown. Our aim is to investigate the electrophysiological mechanism for QT-prolongation in TTC-patients by using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS: hiPSC-CMs, which were generated from human skin fibroblasts of three healthy donors, were treated by estradiol (10µM for one week) and a toxic concentration of isoprenaline (Iso, 1mM for 2h). Patch clamp techniques, qPCR and fluorescence-activated cell sorting (FACS) were employed for the study. KEY RESULTS: Iso enhanced late INa and suppressed Ito and thus prolonged the action potential duration (APD), suggesting possible reasons for arrhythmias in TTC. Iso elevated the production of reactive oxygen species (ROS). N-acetylcystein (1mM), a ROS-blocker, abolished the effects of Iso on late INa and Ito. H2O2 (100µM) mimicked Iso effects on late INa and Ito. These data indicate that the effects of Iso were mediated by ROS. Metoprolol (1mM), a beta-blocker, prevented the effects of Iso on late INa and APD, confirming the adrenoceptor-dependent effects of Iso. Estradiol treatment prevented the APD-prolongation, attenuated the enhancement of INa, diminished the reduction of Ito, suppressed ROS-production induced by Iso and reduced the expression levels of adrenoceptors, suggesting protective effects of estragon against toxic effects of catecholamine. CONCLUSIONS: Estradiol has protective effects against catecholamine excess and hence reduction in estrogen level may increase the risk of acquired long QT syndrome in TTC.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Catecolaminas/toxicidad , Citoprotección/efectos de los fármacos , Estradiol/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/fisiología , Células Cultivadas , Citoprotección/fisiología , Estradiol/uso terapéutico , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Cardiomiopatía de Takotsubo/tratamiento farmacológico , Cardiomiopatía de Takotsubo/fisiopatología
9.
JACC Clin Electrophysiol ; 3(4): 353-363, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28948234

RESUMEN

OBJECTIVES: This study sought to test the hypothesis that elimination of sites of abnormal repolarization, via epicardial RFA, suppresses the electrocardiographic and arrhythmic manifestations of BrS. BACKGROUND: Brugada syndrome (BrS) is associated with ventricular tachycardia and ventricular fibrillation leading to sudden cardiac death. Nademanee et al. reported that radiofrequency ablation (RFA) of right ventricular outflow tract epicardium significantly reduced the electrocardiogram and arrhythmic manifestations of BrS. These authors concluded that low-voltage fractionated electrogram activity and late potentials are caused by conduction delay within the right ventricular outflow tract and that the ameliorative effect of RFA is caused by elimination of this substrate. Szel et al. recently demonstrated that the abnormal electrogram activity is associated with repolarization defects rather than depolarization or conduction defects. METHODS: Action potentials (AP), electrograms, and pseudoelectrocardiogram were simultaneously recorded from coronary-perfused canine right ventricular wedge preparations. Two pharmacological models were used to mimic BrS genotype: combination of INa blocker ajmaline (1 to 10 µM) and IK-ATP agonist pinacidil (1 to 5 µM); or combination of Ito agonist NS5806 (4 to 10 µM) and ICa blocker verapamil (0.5 to 2 µM). After stable induction of abnormal electrograms and arrhythmic activity, the preparation was mapped and epicardial RFA was applied. RESULTS: Fractionated low-voltage electrical activity was observed in right ventricular epicardium but not endocardium as a consequence of heterogeneities in the appearance of the second upstroke of the epicardial AP. Discrete late potentials developed as a result of delay of the second upstroke of the AP and of concealed phase 2 re-entry. Epicardial RFA of these abnormalities normalized Brugada pattern and abolished arrhythmic activity, regardless of the pharmacological model used. CONCLUSIONS: Our results suggest that epicardial RFA exerts its ameliorative effect in the setting of BrS by destroying the cells with the most prominent AP notch, thus eliminating sites of abnormal repolarization and the substrate for ventricular tachycardia ventricular fibrillation.


Asunto(s)
Ajmalina/efectos adversos , Arritmias Cardíacas/cirugía , Síndrome de Brugada/cirugía , Pinacidilo/efectos adversos , Ablación por Radiofrecuencia/métodos , Potenciales de Acción , Animales , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada/inducido químicamente , Síndrome de Brugada/fisiopatología , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Humanos , Resultado del Tratamiento
10.
Can J Physiol Pharmacol ; 95(7): 830-836, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28226224

RESUMEN

Racemic mexiletine is a widely used antiarrhythmic agent that blocks sodium channels. The effects of R-(-) and S-(+) mexiletine stereoisomers on maximum rate of depolarization ([Formula: see text]), conduction time, and repolarization have not yet been investigated in isolated cardiac preparations. We studied the effect of the R-(-) and S-(+) mexiletine on rabbit cardiac action potential parameters by using the conventional microelectrode technique. Both enantiomers at 20 µmol/L of therapeutically and experimentally relevant concentration, significantly depressed the [Formula: see text] at fast heart rates (BCLs 300-700 ms). R-(-) mexiletine has more potent inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine significantly inhibited the [Formula: see text] of early extrasystoles measured at 70 ms diastolic interval induced by S1-S2 stimuli. R-(-) mexiletine has more pronounced inhibitory effect than S-(+) mexiletine. Both R-(-) and S-(+) mexiletine increased significantly the ERP/APD90 ratio. The time constant (τ) of recovery of [Formula: see text] was found to be τ = 376.0 ± 77.8 ms for R-(-) mexiletine and τ = 227.1 ± 23.4 ms for S-(+) mexiletine, which indicates a slower offset kinetics for R-(-) mexiletine from sodium channels than that of the S-(+) enantiomer. These data suggest that R-(-) mexiletine might be a more potent antiarrhythmic agent than S-(+) mexiletine.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Mexiletine/química , Mexiletine/farmacología , Rotación , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Conejos , Estereoisomerismo
11.
PLoS One ; 11(11): e0166143, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829006

RESUMEN

INTRODUCTION: Fever can increase the susceptibility to supraventricular and ventricular arrhythmias, in which sodium channel dysfunction has been implicated. Whether fever influences the efficacy of sodium channel blocking drugs is unknown. The current study was designed to investigate the temperature dependent effects of distinct sodium channel blocking drugs on the sodium currents in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: hiPSC-CMs were generated from human skin fibroblasts of a healthy donor. The peak and late sodium currents (INa), steady-state activation, inactivation and recovery from inactivation of INa in hiPSC-CMs were analyzed using the whole-cell patch clamp technique. The effects of different concentrations of the antiarrhythmic drugs flecainide, lidocaine, ajmaline and the antianginal drug ranolazine on INa were tested at 36°C and 40°C. Increasing the temperature of the bath solution from 36°C to 40°C enhanced the inhibition of peak INa but reduced the inhibition of late INa by flecainide and lidocaine. By contrast, increasing the temperature reduced the effect of ajmaline and ranolazine on the peak INa but not late INa. None of the tested drugs showed temperature-dependent effects on the steady-state activation and inactivation as well as on the recovery from inactivation of INa in hiPSC-CMs. CONCLUSIONS: Temperature variation from the physiological to the febrile range apparently influences the effects of sodium channel blockers on the sodium currents. This may influence their antiarrhythmic efficacy in patients suffering from fever.


Asunto(s)
Calor/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Ajmalina/farmacología , Flecainida/farmacología , Humanos , Lidocaína/farmacología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Ranolazina/farmacología , Canales de Sodio/fisiología
12.
Heart Rhythm ; 13(6): 1326-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26820510

RESUMEN

BACKGROUND: Early repolarization syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and ventricular fibrillation, leading to sudden cardiac death. OBJECTIVE: The present study tests the hypothesis that the transient outward potassium current (Ito)-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. METHODS: Transmembrane action potentials (APs) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left ventricular (LV) wedge preparations, together with a transmural pseudo-electrocardiogram. The Ito agonist NS5806 (7-15 µM) and L-type calcium current (ICa) blocker verapamil (2-3 µM) were used to induce an early repolarization pattern and PVT. RESULTS: After stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase 2 reentry and PVT. Arrhythmic activity was suppressed in 7 of 8 preparations by cilostazol (10 µM), 6 of 7 by milrinone (2.5 µM), and 7 of 8 by isoproterenol (0.1-1 µM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 µM) and milrinone (2.5 µM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. CONCLUSION: Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current during the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying the development of phase 2 reentry and ventricular tachycardia/ventricular fibrillation.


Asunto(s)
Isoproterenol/farmacología , Milrinona/farmacología , Taquicardia Ventricular , Tetrazoles/farmacología , Fibrilación Ventricular , Potenciales de Acción , Animales , Electrofisiología Cardíaca/métodos , Fármacos Cardiovasculares/farmacología , Cilostazol , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Modelos Animales de Enfermedad , Perros , Electrocardiografía/efectos de los fármacos , Canales Iónicos/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/tratamiento farmacológico , Fibrilación Ventricular/fisiopatología
13.
Curr Probl Cardiol ; 41(1): 7-57, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26671757

RESUMEN

Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome first described as a new clinical entity in 1992. Electrocardiographically characterized by distinct coved type ST segment elevation in the right-precordial leads, the syndrome is associated with a high risk for sudden cardiac death in young adults, and less frequently in infants and children. The electrocardiographic manifestations of BrS are often concealed and may be unmasked or aggravated by sodium channel blockers, a febrile state, vagotonic agents, as well as by tricyclic and tetracyclic antidepressants. An implantable cardioverter defibrillator is the most widely accepted approach to therapy. Pharmacologic therapy is designed to produce an inward shift in the balance of currents active during the early phases of the right ventricular action potential (AP) and can be used to abort electrical storms or as an adjunct or alternative to device therapy when use of an implantable cardioverter defibrillator is not possible. Isoproterenol, cilostazol, and milrinone boost calcium channel current and drugs like quinidine, bepridil, and the Chinese herb extract Wenxin Keli inhibit the transient outward current, acting to diminish the AP notch and thus to suppress the substrate and trigger for ventricular tachycardia or fibrillation. Radiofrequency ablation of the right ventricular outflow tract epicardium of patients with BrS has recently been shown to reduce arrhythmia vulnerability and the electrocardiographic manifestation of the disease, presumably by destroying the cells with more prominent AP notch. This review provides an overview of the clinical, genetic, molecular, and cellular aspects of BrS as well as the approach to therapy.


Asunto(s)
Síndrome de Brugada/diagnóstico , Arritmias Cardíacas/etiología , Síndrome de Brugada/etiología , Síndrome de Brugada/genética , Síndrome de Brugada/terapia , Canales de Calcio/genética , Desfibriladores Implantables , Electrocardiografía , Predisposición Genética a la Enfermedad , Humanos , Mutación , Factores de Riesgo , Canales de Sodio/genética
14.
Expert Opin Orphan Drugs ; 3(6): 633-651, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27559494

RESUMEN

INTRODUCTION: Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome characterized by prominent J waves appearing as distinct coved type ST segment elevation in the right precordial leads of the ECG. It is associated with a high risk for sudden cardiac death. AREAS COVERED: We discuss 1) ECG manifestations of BrS which can be unmasked or aggravated by sodium channel blockers, febrile states, vagotonic agents, as well as tricyclic and tetracyclic antidepressants; 2) Genetic basis of BrS; 3) Ionic and cellular mechanisms underlying BrS; 4) Therapy involving devices including an implantable cardioverter defibrillator (ICD); 5) Therapy involving radiofrequency ablation; and 6) Therapy involving pharmacological therapy which is aimed at producing an inward shift in the balance of the currents active during phase 1 of the right ventricular action potential either by boosting calcium channel current (isoproterenol, cilostazol and milrinone) or by inhibition of transient outward current Ito (quinidine, bepridil and the Chinese herb extract Wenxin Keli). EXPERT OPINION: This review provides an overview of the clinical and molecular aspects of BrS with a focus on approaches to therapy. Available data suggest that agents capable of inhibiting the transient outward current Ito can exert an ameliorative effect regardless of the underlying cause.

15.
Circ Arrhythm Electrophysiol ; 7(1): 134-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24429494

RESUMEN

BACKGROUND: Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome and examines the effectiveness of quinidine, cilostazol, and milrinone to prevent hypothermia-induced arrhythmias. METHODS AND RESULTS: Transmembrane action potentials were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3-10 µmol/L) and verapamil (1 µmol/L) was used to pharmacologically model the genetic mutations responsible for ER syndrome. Acetylcholine (3 µmol/L) was used to simulate increased parasympathetic tone, which is known to promote ER. In controls, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J-wave area on the ECG and accentuated epicardial action potential notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial action potential notch, leading to loss of the action potential dome at some sites but not others, thus creating the substrate for development of phase 2 reentry and VT/VF. Addition of the transient outward current antagonist quinidine (5 µmol/L) or the phosphodiesterase III inhibitors cilostazol (10 µmol/L) or milrinone (5 µmol/L) diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. CONCLUSIONS: Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase 2 reentry. Quinidine, cilostazol, and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities.


Asunto(s)
Antiarrítmicos/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Hipotermia Inducida , Milrinona/farmacología , Inhibidores de Fosfodiesterasa 3/farmacología , Quinidina/farmacología , Taquicardia Ventricular/prevención & control , Tetrazoles/farmacología , Fibrilación Ventricular/prevención & control , Potenciales de Acción , Animales , Cilostazol , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Sistema de Conducción Cardíaco/fisiopatología , Perfusión , Transducción de Señal/efectos de los fármacos , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatología
16.
J Mol Cell Cardiol ; 68: 20-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24378566

RESUMEN

Early repolarization pattern in the ECG has been associated with increased risk for ventricular tachycardia/fibrillation (VT/VF), particularly when manifest in inferior leads. This study examines the mechanisms underlying VT/VF in early repolarization syndrome (ERS). Transmembrane action potentials (APs) were simultaneously recorded from 2 epicardial sites and 1 endocardial site of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a pseudo-ECG. Transient outward current (Ito) was recorded from epicardial myocytes isolated from the inferior and lateral LV of the same heart. J wave area (pseudo-ECG), epicardial AP notch magnitude and index were larger in inferior vs. lateral wall preparations at baseline and after exposure to provocative agents (NS5806+verapamil+acetylcholine (ACh)). Ito density was greater in myocytes from inferior vs. lateral wall (18.4 ± 2.3pA/pF vs. 11.6 ± 2.0pA/pF; p<0.05). A combination of NS5806 (7 µM) and verapamil (3 µM) or pinacidil (4 µM), used to pharmacologically model the genetic defects responsible for ERS, resulted in prominent J-point and ST-segment elevation. ACh (3 µM), simulating increased vagal tone, precipitated phase-2-reentry-induced polymorphic VT/VF. Using identical protocols, inducibility of arrhythmias was 3-fold higher in inferior vs. lateral wedges. Quinidine (10 µM) or isoproterenol (1 µM) restored homogeneity and suppressed VT/VF. Our data support the hypothesis that 1) ERS is caused by a preferential accentuation of the AP notch in the LV epicardium; 2) this repolarization defect is accentuated by elevated vagal tone; 3) higher intrinsic levels of Ito account for the greater sensitivity of the inferior LV wall to development of VT/VF; and 4) quinidine and isoproterenol exert ameliorative effects by reversing the repolarization abnormality.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/anomalías , Ventrículos Cardíacos/fisiopatología , Potenciales de Acción , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Perros , Femenino , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Técnicas In Vitro , Masculino , Contracción Miocárdica , Técnicas de Placa-Clamp , Pericardio/fisiopatología , Compuestos de Fenilurea/farmacología , Síndrome , Tetrazoles/farmacología , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...