Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260702

RESUMEN

The chief barrier to studies of how genetic coding emerged is the lack of experimental models for ancestral aminoacyl-tRNA synthetases (AARS). We hypothesized that conserved core catalytic sites could represent such ancestors. That hypothesis enabled engineering functional "urzymes" from TrpRS, LeuRS, and HisRS. We describe here a fourth urzyme, GlyCA, detected in an open reading frame from the genomic record of the arctic fox, Vulpes lagopus. GlyCA is homologous to a bacterial heterotetrameric Class II GlyRS-B. Alphafold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to the HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment. Enzymatic characterization revealed a robust single-turnover burst size and a catalytic rate for ATP consumption well in excess of that previously published for HisCA1. Time-dependent aminoacylation of tRNAGly proceeds at a rate consistent with that observed for amino acid activation. In fact, GlyCA is actually 35 times more active in glycine activation by ATP than the full-length GlyRS-B α-subunit dimer. ATP-dependent activation of the 20 canonical amino acids favors Class II amino acids that complement those favored by HisCA and LeuAC. These properties reinforce the notion that urzymes represent the requisite ancestral catalytic activities to implement a reduced genetic coding alphabet.

2.
Arch Biochem Biophys ; 728: 109358, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872323

RESUMEN

Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes its proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.


Asunto(s)
Vibrio cholerae , Anaerobiosis , Proteínas Bacterianas , Supervivencia Celular , Nitratos , Nitritos , Nutrientes , Proteoma , Proteómica , Espectrometría de Masas en Tándem
3.
Front Microbiol ; 13: 847832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479629

RESUMEN

Macrophomina phaseolina is a global devastating necrotrophic fungal pathogen. It causes charcoal rot disease in more than 500 host plants including major food crops, pulse crops, fiber crops, and oil crops. Despite having the whole-genome sequence of M. phaseolina, understanding the M. phaseolina genome-based plant-pathogen interactions is limited in the absence of direct experimental proof of secretion. Thus, it is essential to understand the host-microbe interaction and the disease pathogenesis, which can ensure global agricultural crop production and security. An in silico-predicted secretome of M. phaseolina is unable to represent the actual secretome. We could identify 117 proteins present in the secretome of M. phaseolina using liquid chromatography-electrospray ionization-tandem mass spectrometry. Data are available via ProteomeXchange with identifier PXD032749. An array of putative virulence factors of M. phaseolina were identified in the present study using solid-state culture. Similar virulence factors have been reported in other plant pathogenic fungi also. Among the secretory fungal proteins with positive economic impacts, lignocellulolytic enzymes are of prime importance. Further, we validated our results by detecting the cell wall-degrading enzymes xylanase, endoglucanase, and amylase in the secretome of M. phaseolina. The present study may provide a better understanding about the necrotrophic fungi M. phaseolina, which modulate the host plant defense barriers using secretory proteins.

4.
Arch Microbiol ; 204(1): 62, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940926

RESUMEN

Macrophomina phaseolina, a necrotrophic fungal pathogen is known to cause charcoal rot disease in food crops, pulse crops, oil crops and cotton and fibre crops. Necrotrophic fungi survive on dead plant tissue. It is well known that reactive oxygen species (ROS) are produced by the host plant during plant-pathogen interaction. However, it is still unclear how M. phaseolina can overcome the ROS-induced cellular damage. To mimic the invasion of M. phaseolina inside the plant cell wall, we developed solid substrate fermentation where M. phaseolina spore suspension was inoculated on a wheat bran bed and incubated for vegetative growth. To analyse the secretome of M. phaseolina after different day interval, its secretory material was collected and concentrated. Both superoxide dismutase (SOD) and catalase were detected in the secretome by zymogram. The presence of SOD and catalase was further confirmed by liquid chromatography based mass spectrometry. The physicochemical properties of M. phaseolina catalase in terms of stability towards pH, temperature, metal ions and chaotropic agent and inhibitors indicated its fitness at different environmental conditions. Apart from the production of catalase in SSF, the studies on this particular microorganism may also have significance in necrotrophic fungal pathogen and their susceptible host plant interaction.


Asunto(s)
Ascomicetos/enzimología , Catalasa , Superóxido Dismutasa , Enfermedades de las Plantas/microbiología , Secretoma
5.
Nitric Oxide ; 88: 35-44, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981896

RESUMEN

Vibrio cholerae faces nitrosative stress during successful colonization in intestine. Very little information is available on the nitrosative stress protective mechanisms of V. cholerae. Reports show that NorR regulon control two genes hmpA and nnrS responsible for nitric oxide (NO) detoxification in V. cholerae. In the present study we first time report a novel role of V. cholerae catalases under nitrosative stress. Using zymogram analysis of catalase we showed that KatB and KatG activity were induced within 30 min in V. cholerae in the presence of sodium nitroprusside (SNP), a NO donor compound. Surprisingly, V. cholerae cell survival was found to be decreased under nitrosative stress if catalase activities were blocked by ATz, a catalase inhibitor. Flow cytometry study was conducted to detect reactive oxygen species (ROS) and reactive nitrogen species (RNS) using DHE and DHR123, fluorescent probes respectively. Short exposure of SNP to V. cholerae did not generate ROS but RNS was detectable within 30 min. Total glutathione content was increased in V. cholerae cells under nitrosative stress. Furthermore, Superoxide dismutase (SOD) and Glutathione reductase (GR) activities remained unchanged under nitrosative stress in V. cholerae indicated antioxidant role of NO which could produce peroxynitrite. To investigate the role of catalase induction under nitrosative stress in V. cholerae, we conducted peroxynitrite reductase assay using cell lysates. Interestingly, SNP treated V. cholerae cell lysates showed lowest DHR123 oxidation compared to the control set. The extent of DHR123 oxidation was more in V. cholerae cell lysate when catalases were blocked by ATz.


Asunto(s)
Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Estrés Nitrosativo/fisiología , Especies de Nitrógeno Reactivo/fisiología , Vibrio cholerae/fisiología , Amitrol (Herbicida)/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Catalasa/antagonistas & inhibidores , Catalasa/genética , Inducción Enzimática , Inhibidores Enzimáticos , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología
6.
Microbiol Res ; 206: 82-90, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146263

RESUMEN

Nitric Oxide (NO) and its associated reactive nitrogen species (RNS) produce nitrosative stress under various pathophysiological conditions in eukaryotes. The fission yeast Schizosaccharomyces pombe regulates stress response mainly through the Sty1-Atf1 MAP Kinase pathway. The present study deals with the role of transcription factor Atf1 and Sty1 in S. pombe under nitrosative stress. In this study, exposure to an NO donor resulted in S-phase slowdown with associated mitotic block in S. pombe. Deletion of sty1 and atf1 in S. pombe had differential growth sensitivity towards NO donor. Both Sty1 and Atf1 were involved in regulating mitotic slowdown in S. pombe under nitrosative stress. Experimental data obtained in this study reveals a novel role of Atf1 in initiating the replication slowdown in S. pombe under nitrosative stress. Both Sty1 and Atf1 were accumulated in the nucleus in S. pombe under nitrosative stress in a concentration and time dependent manner. Atf1 is also found to be nuclear delocalized under longer nitrosative stress.


Asunto(s)
Factor de Transcripción Activador 1/genética , Factor de Transcripción Activador 1/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Nitrosativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclo Celular , Supervivencia Celular , Replicación del ADN , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Óxido Nítrico/metabolismo , Proteínas Nucleares , Estrés Oxidativo , Fosforilación , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/patogenicidad
7.
Appl Biochem Biotechnol ; 182(3): 871-884, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28000045

RESUMEN

Vibrio cholerae, the causative agent of cholera, poses serious threats to humans worldwide. V. cholerae faces host inflammatory response and encounters nitrosative stress before establishing successful colonization. It is not clear how V. cholerae combats nitric oxide and reactive nitrogen species. In the present study, we used three clinical strains of V. cholerae and tested their nitrosative stress response pattern towards sodium nitroprusside (SNP) and S-Nitrosoglutathione (GSNO). Among them, V. cholerae, belonging to both O1 and O139 serotypes, showed moderate resistance to SNP and GSNO. However, a V. cholerae strain belonging to non O1 and non O139 showed sensitivity to SNP but resistance towards GSNO. Reduced glutathione and glutathione reductase play a significant role to combat nitrosative stress in V. cholerae. This is the first report where we show the presence of GSNO reductase activity in V. cholerae and that it plays an important role to detoxify S-Nitrosoglutathione. GSNO reductase activity of V. cholerae was regulated by posttranslational modification through S-nitrosylation under in vitro conditions which could be reversed by dithiothreitol (DTT). In addition, we show that biofilm formation remained unaffected under nitrosative stress in V. cholerae.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/metabolismo , Nitroprusiato/farmacología , Estrés Oxidativo/efectos de los fármacos , S-Nitrosoglutatión/farmacología , Vibrio cholerae/enzimología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...