Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 8(1): 61, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919305

RESUMEN

In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.

2.
Protein Expr Purif ; 167: 105541, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31756376

RESUMEN

Polyhistidine tags (His-tags) are commonly employed in protein purification strategies due to the high affinity and specificity for metal-NTA columns, the relative simplicity of such protocols, and the assumption that His-tags do not affect the native activities of proteins. However, there is a growing body of evidence that such tags can modulate protein structure and function. In this study, we demonstrate that a His-tag impacts DNA complex formation by the C-terminal domain of the α-subunit (αCTD) of Helicobacter pylori RNA polymerase in a metal-dependent fashion. The αCTD was purified with a cleavable His-tag, and complex formation between αCTD, the nickel-responsive metalloregulator HpNikR, and DNA was investigated using electrophoretic mobility shift assays. An interaction between His-tagged αCTD (HisαCTD) and the HpNikR-DNA complex was observed; however, this interaction was not observed upon removal of the His-tag. Further analysis revealed that complex formation between HisαCTD and DNA is non-specific and dependent on the type of metal ions present. Overall, the results indicate that a histidine tag is able to modulate DNA-binding activity and suggests that the impact of metal affinity tags should be considered when analyzing the in vitro biomolecular interactions of metalloproteins.


Asunto(s)
Proteínas de Unión al ADN , Etiquetas de Secuencia Expresada/química , Helicobacter pylori , ARN Polimerasa III/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histidina/genética , Iones/metabolismo , Metaloproteínas/biosíntesis , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Metales/metabolismo , Níquel/metabolismo , ARN Polimerasa III/biosíntesis , ARN Polimerasa III/química , ARN Polimerasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA