Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 662: 663-675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368824

RESUMEN

To meet the requirements in air quality monitors for the public and industrial safety, sensors are required that can selectively detect the concentration of gaseous pollutants down to the parts per million (ppm) and ppb (parts per billion) levels. Herein, we report a remarkable NH3 sensor using Ni-doped CeO2 octahedral nanostructure which efficiently detects NH3 as low as 45 ppb at room temperature. The Ni-doped CeO2 sensor exhibits the maximum response of 42 towards 225 ppm NH3, which is ten-fold higher than pure CeO2. The improved sensing performance is caused by the enhancement of oxygen vacancy, bandgap narrowing, and redox property of CeO2 caused by Ni doping. Density functional theory confirms that O vacancy with Ni at Ce site (VONiCe) augments the sensing capabilities. The Bader charge analysis predicts the amount of charge transfer (0.04 e) between the Ni-CeO2 surface and the NH3 molecule. As well, the high negative adsorption energy (≈750 meV) and lowest distance (1.40 Å) of the NH3 molecule from the sensor surface lowers the detection limit. The present work enlightens the fabrication of sensing elements through defect engineering for ultra-trace detection of NH3 to be useful further in the field of sensor applications.

2.
Adv Pharmacol Pharm Sci ; 2021: 1540336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957401

RESUMEN

Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80-100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA