Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Biol Anthropol ; 181(4): 535-544, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37353889

RESUMEN

Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this "difficulty" of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the "obstetrical dilemma." Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care.


Asunto(s)
Hominidae , Parto , Embarazo , Animales , Recién Nacido , Humanos , Femenino , Pelvis , Primates , Parto Obstétrico
2.
J Evol Biol ; 29(9): 1737-51, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27234063

RESUMEN

Developmental stability and canalization describe the ability of developmental systems to minimize phenotypic variation in the face of stochastic micro-environmental effects, genetic variation and environmental influences. Canalization is the ability to minimize the effects of genetic or environmental effects, whereas developmental stability is the ability to minimize the effects of micro-environmental effects within individuals. Despite much attention, the mechanisms that underlie these two components of phenotypic robustness remain unknown. We investigated the genetic structure of phenotypic robustness in the collaborative cross (CC) mouse reference population. We analysed the magnitude of fluctuating asymmetry (FA) and among-individual variation of cranial shape in reciprocal crosses among the eight parental strains, using geometric morphometrics and a diallel analysis based on a Bayesian approach. Significant differences among genotypes were found for both measures, although they were poorly correlated at the level of individuals. An overall positive effect of inbreeding was found for both components of variation. The strain CAST/EiJ exerted a positive additive effect on FA and, to a lesser extent, among-individual variance. Sex- and other strain-specific effects were not significant. Neither FA nor among-individual variation was associated with phenotypic extremeness. Our results support the existence of genetic variation for both developmental stability and canalization. This finding is important because robustness is a key feature of developmental systems. Our finding that robustness is not related to phenotypic extremeness is consistent with theoretical work that suggests that its relationship to stabilizing selection is not straightforward.


Asunto(s)
Teorema de Bayes , Variación Genética , Endogamia , Animales , Estructuras Genéticas , Genotipo , Ratones , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA