Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1330109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156016

RESUMEN

The nucleoid-associated protein HU is a common bacterial transcription factor, whose role in pathogenesis and virulence has been described in many bacteria. Our recent studies showed that the HU protein is an indispensable virulence factor in the human pathogenic bacterium Francisella tularensis, a causative agent of tularemia disease, and that this protein can be a key target in tularemia treatment or vaccine development. Here, we show that Francisella HU protein is inhibited by Gp46, a protein of Bacillus subtilis bacteriophage SPO1. We predicted that Gp46 could occupy the F. tularensis HU protein DNA binding site, and subsequently confirmed the ability of Gp46 to abolish the DNA-binding capacity of HU protein. Next, we showed that the growth of Francisella wild-type strain expressing Gp46 in trans corresponded to that of a deletion mutant strain lacking the HU protein. Similarly, the efficiency of intracellular proliferation in mouse macrophages resembled that of the deletion mutant strain, but not that of the wild-type strain. These results, in combination with findings from a recent study on Gp46, enabled us to confirm that Gp46 could be a universal inhibitor of HU proteins among bacterial species.

2.
Front Immunol ; 14: 1252827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841261

RESUMEN

Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.


Asunto(s)
Francisella tularensis , Infecciones por Bacterias Gramnegativas , Humanos , Macrófagos , Infecciones por Bacterias Gramnegativas/metabolismo , Transducción de Señal , Enzimas Desubicuitinizantes/metabolismo , Ubiquitina Tiolesterasa/metabolismo
3.
Microb Pathog ; 176: 105999, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702369

RESUMEN

Francisella tularensis is a highly infectious intracellular bacterium causing tularemia disease and is regarded as a potential biological weapon. The development of a vaccine, effective treatment, or prophylactic substances targeted against tularemia is in the forefront of interest and could help to prevent or mitigate possible malevolent acts by bioterrorism utilizing F. tularensis. The viability of F. tularensis, and thus of a tularemia disease outbreak, might potentially be suppressed by simple commonly available natural substances. Epigallocatechin gallate (EGCG) is contained in green tea and its antimicrobial effect has been described. Here, we show that EGCG can suppress F. tularensis growth and is able to reduce the bacterium's ability to replicate inside mouse bone marrow-derived macrophages (BMMs) without side effects on BMMs' own viability. We suggest one (but not the only) mechanism of EGCG action. We demonstrate that EGCG can block the main functions of HU protein, the important regulator of F. tularensis virulence, leading to overall attenuation of F. tularensis viability. EGCG can delay death of mice infected by F. tularensis and can be used as a prophylactic agent against tularemia disease. Postponing death by up to 2 days can provide sufficient opportunity to administer another treatment agent.


Asunto(s)
Catequina , Francisella tularensis , Tularemia , Animales , Ratones , Tularemia/microbiología , Proteínas de Unión al ADN/metabolismo , Catequina/uso terapéutico
4.
Virulence ; 13(1): 1790-1809, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36226562

RESUMEN

HU protein, a member of the nucleoid-associated group of proteins, is an important transcription factor in bacteria, including in the dangerous human pathogen Francisella tularensis. Generally, HU protein acts as a DNA sequence non-specific binding protein and it is responsible for winding of the DNA chain that leads to the separation of transcription units. Here, we identified potential HU protein binding sites using the ChIP-seq method and two possible binding motifs in F. tularensis subsp. holarctica FSC200 depending upon growth conditions. We also confirmed that FSC200 HU protein is able to introduce negative supercoiling of DNA in the presence of topoisomerase I. Next, we showed interaction of the HU protein with a DNA region upstream of the pigR gene and inside the clpB gene, suggesting possible regulation of PigR and ClpB expression. Moreover, we showed that arginine 58 and partially arginine 61 are important for HU protein's DNA binding capacity, negative supercoiling induction by HU, and the length and winding of FSC200 chromosomal DNA. Finally, in order to verify biological function of the HU protein, we demonstrated that mutations in arginine 58, arginine 61, and serine 74 of the HU protein decrease virulence of FSC200 both in vitro and in vivo and that immunization using these mutant strains is able to protect as many as 100% of mice against wild-type challenge. Taken together, our findings deepen knowledge about the role of the HU protein in tularaemia pathogenesis and suggest that HU protein should be addressed in the context of tularaemia vaccine development.


Asunto(s)
Francisella tularensis , Tularemia , Animales , Arginina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Francisella , Humanos , Ratones , Serina/metabolismo , Factores de Transcripción/metabolismo , Tularemia/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...