Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Cells ; 12(6)2023 03 16.
Article En | MEDLINE | ID: mdl-36980263

The Drosophila abnormal spindle (asp) gene was discovered about 40 years ago and shown to be required for both mitotic and meiotic cell division. Subsequent studies showed that asp is highly conserved and that mutations in its human ortholog ASPM (Abnormal Spindle-like Microcephaly-associated; or MCPH5) are the most common cause of autosomal recessive primary microcephaly. This finding greatly stimulated research on ASPM and its fly and mouse (Aspm) orthologs. The three Asp orthologous proteins bind the microtubules (MTs) minus ends during cell division and also function in interphase nuclei. Investigations on different cell types showed that Asp/Aspm/ASPM depletion disrupts one or more of the following mitotic processes: aster formation, spindle pole focusing, centrosome-spindle coupling, spindle orientation, metaphase-to-anaphase progression, chromosome segregation, and cytokinesis. In addition, ASPM physically interacts with components of the DNA repair and replication machineries and is required for the maintenance of chromosomal DNA stability. We propose the working hypothesis that the asp/Aspm/ASPM genes play the same conserved functions in Drosophila, mouse, and human cells. Human microcephaly is a genetically heterogeneous disorder caused by mutations in 30 different genes that play a variety of functions required for cell division and chromosomal DNA integrity. Our hypothesis postulates that ASPM recapitulates the functions of most human microcephaly genes and provides a justification for why ASPM is the most frequently mutated gene in autosomal recessive primary microcephaly.


Microcephaly , Animals , Humans , Mice , DNA , Drosophila/metabolism , Microcephaly/genetics , Microcephaly/metabolism , Mitosis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
2.
Cells ; 11(14)2022 07 06.
Article En | MEDLINE | ID: mdl-35883570

Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.


Drosophila Proteins , Kinetochores , Animals , Demecolcine/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Kinesins/genetics , Kinetochores/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Spindle Apparatus/metabolism
3.
Cells ; 9(6)2020 06 26.
Article En | MEDLINE | ID: mdl-32604778

Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions. However, recently published moonlighting protein databases, which comprise almost 400 proteins, do not include TFs and SFs with secondary mitotic functions. We searched the literature and found several TFs and SFs with bona fide moonlighting mitotic functions, namely they localize to specific mitotic structure(s), interact with proteins enriched in the same structure(s), and are required for proper morphology and functioning of the structure(s). In addition, we describe TFs and SFs that localize to mitotic structures but cannot be classified as moonlighting proteins due to insufficient data on their biochemical interactions and mitotic roles. Nevertheless, we hypothesize that most TFs and SFs with specific mitotic localizations have either minor or redundant moonlighting functions, or are evolving towards the acquisition of these functions.


Mitosis/physiology , RNA Splicing Factors/metabolism , Transcription Factors/metabolism , Humans
4.
PLoS Genet ; 15(9): e1008371, 2019 09.
Article En | MEDLINE | ID: mdl-31527906

The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of housekeeping genes. It contains at least seven subunits that are conserved in the human KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance. Here, we analyzed the mitotic phenotypes caused by RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds in greater detail. Depletion of any of these proteins in Drosophila S2 cells led to defects in chromosome segregation. Consistent with these findings, Rcd1, Rcd5 and MBD-R2 RNAi cells showed reduced levels of both Cid/CENP-A and the kinetochore component Ndc80. In addition, RNAi against any of the four genes negatively affected centriole duplication. In Wds-depleted cells, the mitotic phenotypes were similar but milder than those observed in Rcd1-, Rcd5- or MBD-R2-deficient cells. RT-qPCR experiments and interrogation of published datasets revealed that transcription of many genes encoding centromere/kinetochore proteins (e.g., cid, Mis12 and Nnf1b), or involved in centriole duplication (e.g., Sas-6, Sas-4 and asl) is substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells, and to a lesser extent in wds RNAi cells. During mitosis, both Rcd1-GFP and Rcd5-GFP accumulate at the centrosomes and the telophase midbody, MBD-R2-GFP is enriched only at the chromosomes, while Wds-GFP accumulates at the centrosomes, the kinetochores, the midbody, and on a specific chromosome region. Collectively, our results suggest that the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds depletion are primarily due to reduced transcription of genes involved in kinetochore assembly and centriole duplication. The differences in the subcellular localizations of the NSL components may reflect direct mitotic functions that are difficult to detect at the phenotypic level, because they are masked by the transcription-dependent deficiency of kinetochore and centriolar proteins.


Chromosome Duplication/genetics , Chromosome Segregation/genetics , Transcription Factors/genetics , Animals , Cell Cycle Proteins/genetics , Centromere/metabolism , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Kinetochores/metabolism , Microtubules/metabolism , Mitosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Transport/physiology , RNA Interference , RNA-Binding Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Spindle Apparatus/genetics , Transcription Factors/metabolism , Vesicular Transport Proteins/genetics
5.
BMC Mol Cell Biol ; 20(1): 24, 2019 Jul 08.
Article En | MEDLINE | ID: mdl-31286886

During production of the original article [1], there was a technical error that resulted in author corrections not being rendered in the PDF version of the article.

6.
BMC Mol Cell Biol ; 20(Suppl 1): 7, 2019 04 17.
Article En | MEDLINE | ID: mdl-31284878

BACKGROUND: The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila, there is only one CAMSAP, named Patronin. Previous work has shown that Patronin stabilizes the minus ends of non-mitotic MTs and is required for proper spindle elongation. However, the precise role of Patronin in mitotic spindle assembly is poorly understood. RESULTS: Here we have explored the role of Patronin in Drosophila mitosis using S2 tissue culture cells as a model system. We show that Patronin associates with different types of MT bundles within the Drosophila mitotic spindle, and that it is required for their stability. Imaging of living cells expressing Patronin-GFP showed that Patronin displays a dynamic behavior. In prometaphase cells, Patronin accumulates on short segments of MT bundles located near the chromosomes. These Patronin "seeds" extend towards the cell poles and stop growing just before reaching the poles. Our data also suggest that Patronin localization is largely independent of proteins acting at the MT minus ends such as Asp and Klp10A. CONCLUSION: Our results suggest a working hypothesis about the mitotic role of Patronin. We propose that Patronin binds the minus ends within MT bundles, including those generated from the walls of preexisting MTs via the augmin-mediated pathway. This would help maintaining MT association within the mitotic bundles, thereby stabilizing the spindle structure. Our data also raise the intriguing possibility that the minus ends of bundled MTs can undergo a limited polymerization.


Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Microtubule-Associated Proteins/metabolism , Mitosis/physiology , Animals , Cell Cycle Proteins/metabolism , Cell Line , Centrosome/metabolism , Chromosome Segregation , Kinesins/metabolism , Microtubules/metabolism , Polymerization , Protein Binding , Spindle Apparatus/metabolism
7.
BMC Genet ; 20(Suppl 1): 31, 2019 03 18.
Article En | MEDLINE | ID: mdl-30885138

BACKGROUND: Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce. In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter referred to as dCNDP2), is still unknown. RESULTS: This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We generated a dCNDP2 null mutation (hereafter ∆dCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and found that the ∆dCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter, as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes. CONCLUSIONS: The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The genetic and molecular tools developed in this study will allow further functional characterization of the conserved CNDP2 protein using D. melanogaster as a model system.


Drosophila melanogaster/genetics , Animals , Animals, Genetically Modified , Cell Line , Cell Proliferation , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Protein Isoforms/genetics
8.
BMC Biol ; 16(1): 68, 2018 06 15.
Article En | MEDLINE | ID: mdl-29907103

BACKGROUND: S2 cells are one of the most widely used Drosophila melanogaster cell lines. A series of studies has shown that they are particularly suitable for RNAi-based screens aimed at the dissection of cellular pathways, including those controlling cell shape and motility, cell metabolism, and host-pathogen interactions. In addition, RNAi in S2 cells has been successfully used to identify many new mitotic genes that are conserved in the higher eukaryotes, and for the analysis of several aspects of the mitotic process. However, no detailed and complete description of S2 cell mitosis at the ultrastructural level has been done. Here, we provide a detailed characterization of all phases of S2 cell mitosis visualized by transmission electron microscopy (TEM). RESULTS: We analyzed by TEM a random sample of 144 cells undergoing mitosis, focusing on intracellular membrane and microtubule (MT) behaviors. This unbiased approach provided a comprehensive ultrastructural view of the dividing cells, and allowed us to discover that S2 cells exhibit a previously uncharacterized behavior of intracellular membranes, involving the formation of a quadruple nuclear membrane in early prometaphase and its disassembly during late prometaphase. After nuclear envelope disassembly, the mitotic apparatus becomes encased by a discontinuous network of endoplasmic reticulum membranes, which associate with mitochondria, presumably to prevent their diffusion into the spindle area. We also observed a peculiar metaphase spindle organization. We found that kinetochores with attached k-fibers are almost invariably associated with lateral MT bundles that can be either interpolar bundles or k-fibers connected to a different kinetochore. This spindle organization is likely to favor chromosome alignment at metaphase and subsequent segregation during anaphase. CONCLUSIONS: We discovered several previously unknown features of membrane and MT organization during S2 cell mitosis. The genetic determinants of these mitotic features can now be investigated, for instance by using an RNAi-based approach, which is particularly easy and efficient in S2 cells.


Cell Line/ultrastructure , Drosophila melanogaster/cytology , Intracellular Membranes/ultrastructure , Kinetochores/ultrastructure , Microtubules/ultrastructure , Mitosis , Animals , Microscopy, Electron, Transmission/methods
9.
MethodsX ; 3: 551-559, 2016.
Article En | MEDLINE | ID: mdl-27822450

The Drosophila S2 tissue culture cells are a widely used system for studies on mitosis. S2 cells are particularly sensitive to gene silencing by RNA interference (RNAi), allowing targeted inactivation of mitotic genes. S2 cells are also well suited for high-resolution light microscopy analysis of mitosis in fixed cells, and can be easily immunostained to detect mitotic components. In addition, S2 cells are amenable to transformation with plasmid encoding fluorescently tagged mitotic proteins, allowing in vivo analysis of their behavior throughout cell division. However, S2 cells have not been widely used for transmission electron microscopy (TEM) analysis, which provides ultrastructural details on the morphology of the mitotic apparatus that cannot be obtained with high-resolution confocal microscopy. Here, we describe a simple method for the ultrastructural analysis of mitosis in Drosophila S2 cells. •Our method, which involves fixation and sectioning of a cell pellet, provides excellent preservation of mitotic structures and allows analysis of a higher number of mitotic divisions per sample, compared to correlative light-electron microscopy.•Dividing cells are randomly oriented within the pellet and are sectioned along different planes, providing all-around information on the structure of the mitotic apparatus.

...