Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; : 7111-7117, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954795

RESUMEN

Quantum chemistry simulations offer a cost-effective way to computationally design BODIPY photosensitizers. However, accurate predictions of excitation energies pose a challenge for time-dependent density functional theory and equation-of-motion coupled-cluster singles and doubles methods. By contrast, reliable predictions can be achieved by multireference quantum chemistry methods; unfortunately, their computational cost increases exponentially with the number of electrons. Alternatively, quantum computing holds potential for an exact simulation of the photophysical properties in a computationally more efficient way. Herein, we introduce the state-specific ΔUCCSD-VQE (unitary coupled-cluster singles and doubles-variational quantum eigensolver) and ΔADAPT-VQE methods in which the electronically excited state is calculated via a non-Aufbau configuration. We show for six BODIPY derivatives that the proposed methods predict accurate excitation energies that are in good agreement with those from experiments. Due to its performance and simplicity, we believe that ΔADAPT will become a useful approach for the simulation of BODIPY photosensitizers on near-term quantum devices.

2.
J Phys Chem A ; 128(3): 687-698, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214999

RESUMEN

In this work, we integrate the variational quantum eigensolver (VQE) with the adiabatic connection (AC) method for efficient simulations of chemical problems on near-term quantum computers. Orbital-optimized VQE methods are employed to capture the strong correlation within an active space, and classical AC corrections recover the dynamical correlation effects comprising electrons outside of the active space. On two challenging strongly correlated problems, namely, the dissociation of N2 and the electronic structure of the tetramethyleneethane biradical, we show that the combined VQE-AC approach enhances the performance of VQE dramatically. Moreover, since the AC corrections do not bring any additional requirements on quantum resources or measurements, they can actually boost the VQE algorithms. Our work paves the way toward quantum simulations of real-life problems on near-term quantum computers.

3.
J Phys Chem Lett ; 15(5): 1373-1381, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38287217

RESUMEN

The recent advent of quantum algorithms for noisy quantum devices offers a new route toward simulating strong light-matter interactions of molecules in optical cavities for polaritonic chemistry. In this work, we introduce a general framework for simulating electron-photon-coupled systems on small, noisy quantum devices. This method is based on the variational quantum eigensolver (VQE) with the polaritonic unitary coupled cluster (PUCC) ansatz. To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods, such as electron-photon parity, and use recently developed error mitigation schemes, such as the reference zero-noise extrapolation method. We explore the robustness of the VQE-PUCC approach across a diverse set of regimes for the bond length, cavity frequency, and coupling strength of the H2 molecule in an optical cavity. To quantify the performance, we measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number, an experimentally accessible general indicator of electron-photon correlation.

4.
J Chem Theory Comput ; 19(24): 9269-9277, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38081802

RESUMEN

Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.

5.
J Chem Phys ; 159(20)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991157

RESUMEN

In truncated coupled-cluster (CC) theories, non-variational and/or generally complex ground-state energies can occur. This is due to the non-Hermitian nature of the similarity transformed Hamiltonian matrix in combination with CC truncation. For chemical problems that deal with real-valued Hamiltonian matrices, complex CC energies rarely occur. However, for complex-valued Hamiltonian matrices, such as those that arise in the presence of strong magnetic fields, complex CC energies can be regularly observed unless certain symmetry conditions are fulfilled. Therefore, in the presence of magnetic fields, it is desirable to pursue CC methods that are guaranteed to give upper-bound, real-valued energies. In this work, we present the first application of unitary CC to chemical systems in a strong magnetic field. This is achieved utilizing the variational quantum eigensolver algorithm applied to the unitary coupled-cluster singles and doubles (UCCSD) method. We benchmark the method on the H2 molecule in a strong magnetic field and then calculate UCCSD energies for the H4 molecule as a function of both geometry and field angle. We show that while standard CCSD can yield generally complex energies that are not an upper-bound to the true energy, UCCSD always results in variational and real-valued energies. We also show that the imaginary components of the CCSD energy are largest in the strongly correlated region. Last, the UCCSD calculations capture a large percentage of the correlation energy.

6.
J Phys Chem A ; 127(48): 10184-10188, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992280

RESUMEN

Click chemistry, which refers to chemical reactions that are fast and selective with high product yields, has become a powerful approach in organic synthesis and chemical biology. Due to the cytotoxicity of the transition metals employed in click chemistry reactions, a search for novel metal-free alternatives continues. Herein, we demonstrate that an optical cavity can be utilized as a metal-free alternative in the click chemistry cycloaddition reaction between cyanoacetylene and formylazide using the quantum electrodynamics coupled cluster method. We show that by changing the molecular orientation with respect to the polarization of the cavity mode(s), the reaction can be selectively catalyzed to form a major 1,4-disubstituted or 1,5-disubstituted product. This work highlights that a cavity has the same effect on the investigated cycloaddition as the transition metal catalysts traditionally employed in click chemistry reactions. We expect our findings to further stimulate research on cavity-assisted click chemistry reactions.

7.
J Phys Chem Lett ; 14(35): 7876-7882, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37639229

RESUMEN

Quantum computers have emerged as a promising platform to simulate strong electron correlation that is crucial to catalysis and photochemistry. However, owing to the choice of a trial wave function employed in the variational quantum eigensolver (VQE) algorithm, accurate simulation is restricted to certain classes of correlated phenomena. Herein, we combine the spin-flip (SF) formalism with the unitary coupled cluster with singles and doubles (UCCSD) method via the quantum equation-of-motion (qEOM) approach to allow for an efficient simulation of a large family of strongly correlated problems. We show that the developed qEOM-SF-UCCSD/VQE method outperforms its UCCSD/VQE counterpart for simulation of the cis-trans isomerization of ethylene, and the automerization of cyclobutadiene and the predicted qEOM-SF-UCCSD/VQE barrier heights are in a good agreement with the experimentally determined values. The developments presented herein will further stimulate the investigation of this approach for simulations of other types of correlated/entangled phenomena on quantum computers.

8.
Nat Commun ; 14(1): 2766, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179341

RESUMEN

Achieving control over chemical reaction's rate and stereoselectivity realizes one of the Holy Grails in chemistry that can revolutionize chemical and pharmaceutical industries. Strong light-matter interaction in optical or nanoplasmonic cavities might provide the knob to reach such control. In this work, we demonstrate the catalytic and selectivity control of an optical cavity for two selected Diels-Alder cycloaddition reactions using the quantum electrodynamics coupled cluster (QED-CC) method. Herein, we find that by changing the molecular orientation with respect to the polarization of the cavity mode the reactions can be significantly inhibited or selectively enhanced to produce major endo or exo products on demand. This work highlights the potential of utilizing quantum vacuum fluctuations of an optical cavity to modulate the rate of Diels-Alder cycloaddition reactions and to achieve stereoselectivity in a practical and non-intrusive way. We expect that the present findings will be applicable to a larger set of relevant reactions, including the click chemical reactions.

9.
J Chem Phys ; 158(12): 124120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003738

RESUMEN

In this work, a linear scaling explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12) is presented. By using the idea of a domain-based local pair natural orbital (DLPNO), computational scaling of the conventional NEVPT2-F12 is reduced to near-linear scaling. For low-lying excited states of organic molecules, the excitation energies predicted by DLPNO-NEVPT2-F12 are as accurate as the exact NEVPT2-F12 results. Some cluster models of rhodopsin are studied using the new algorithm. Our new method is able to study systems with more than 3300 basis functions and an active space containing 12 π-electrons and 12 π-orbitals. However, even larger calculations or active spaces would still be feasible.

10.
J Phys Chem Lett ; 14(14): 3491-3497, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37011400

RESUMEN

Quantum computing has emerged as a promising platform for simulating strongly correlated systems in chemistry, for which the standard quantum chemistry methods are either qualitatively inaccurate or too expensive. However, due to the hardware limitations of the available noisy near-term quantum devices, their application is currently limited only to small chemical systems. One way for extending the range of applicability can be achieved within the quantum embedding approach. Herein, we employ the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm, although not limited to, with density functional theory (DFT). The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile. The results presented herein show that the developed method is a promising approach for simulating systems with a strongly correlated fragment on a quantum computer.

11.
J Phys Chem Lett ; 14(3): 716-722, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36648273

RESUMEN

The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlation. In this work, we present the first step in the direction of combining DMRG with density functional theory (DFT), one of the most employed quantum chemical methods with favorable scaling, by means of the projection-based wave function (WF)-in-DFT embedding. On two proof-of-concept but important molecular examples, we demonstrate that the developed DMRG-in-DFT approach provides a very accurate description of molecules with a strongly correlated fragment.

13.
J Chem Phys ; 157(9): 094101, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075718

RESUMEN

Polaritonic chemistry relies on the strong light-matter interaction phenomena for altering the chemical reaction rates inside optical cavities. To explain and understand these processes, the development of reliable theoretical models is essential. While computationally efficient quantum electrodynamics self-consistent field (QED-SCF) methods, such as quantum electrodynamics density functional theory, need accurate functionals, quantum electrodynamics coupled cluster (QED-CC) methods provide a systematic increase in accuracy but at much greater cost. To overcome this computational bottleneck, herein we introduce and develop the QED-CC-in-QED-SCF projection-based embedding method that inherits all the favorable properties from the two worlds: computational efficiency and accuracy. The performance of the embedding method is assessed by studying some prototypical but relevant reactions, such as methyl transfer reaction, proton transfer reaction, and protonation reaction, in a complex environment. The results obtained with the new embedding method are in excellent agreement with more expensive QED-CC results. The analysis performed on these reactions indicates that the electron-photon correlation effects are local in nature and that only a small region should be treated at the QED-CC level for capturing important effects due to cavity. This work sets the stage for future developments of polaritonic quantum chemistry methods and will serve as a guideline for the development of other polaritonic embedding models.

14.
J Chem Phys ; 157(7): 074104, 2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35987569

RESUMEN

The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide range of chemical and biological processes. Within the nuclear-electronic orbital (NEO) approach, such effects are incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that explicitly includes the triple electron-electron-proton excitations, where two electrons and one proton are excited simultaneously, using automatic differentiation Our calculations show that this NEO-CCSDTeep method provides highly accurate proton densities and proton affinities, outperforming any previously studied NEO method. These examples highlight the importance of the triple electron-electron-proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method as well as its scaled-opposite-spin (SOS) versions. The NEO-SOS'-CC2 method, which scales the electron-proton correlation energy as well as the opposite-spin and same-spin components of the electron-electron correlation energy, achieves nearly the same accuracy as the NEO-CCSDTeep method for the properties studied. Because of its low computational cost, this method will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the stage for a variety of developments and applications within the NEO framework.

15.
J Phys Chem Lett ; 13(24): 5563-5570, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35696537

RESUMEN

Nuclear quantum effects such as zero-point energy are important in a wide range of chemical and biological processes. The nuclear-electronic orbital (NEO) framework intrinsically includes such effects by treating electrons and specified nuclei quantum mechanically on the same level. Herein, we implement the NEO scaled-opposite-spin orbital-optimized second-order Møller-Plesset perturbation theory with electron-proton correlation scaling (NEO-SOS'-OOMP2) using density fitting. This efficient implementation allows applications to larger systems with multiple quantum protons. Both the NEO-SOS'-OOMP2 method and its counterpart without orbital optimization predict proton affinities to within experimental precision and relative energies of protonated water tetramer isomers in agreement with previous NEO coupled cluster calculations. Applications to protonated water hexamers and heptamers illustrate that anharmonicity is critical for computing accurate relative energies. The NEO-SOS'-OOMP2 approach captures anharmonic zero-point energies at any geometry in a computationally efficient manner and hence will be useful for investigating reaction paths and dynamics in chemical systems.


Asunto(s)
Protones , Teoría Cuántica , Electrones , Isomerismo , Agua
16.
J Am Chem Soc ; 144(11): 4995-5002, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35271261

RESUMEN

Proton transfer is ubiquitous in many fundamental chemical and biological processes, and the ability to modulate and control the proton transfer rate would have a major impact on numerous quantum technological advances. One possibility to modulate the reaction rate of proton transfer processes is given by exploiting the strong light-matter coupling of chemical systems inside optical or nanoplasmonic cavities. In this work, we investigate the proton transfer reactions in the prototype malonaldehyde and Z-3-amino-propenal (aminopropenal) molecules using different quantum electrodynamics methods, in particular, quantum electrodynamics coupled cluster theory and quantum electrodynamical density functional theory. Depending on the cavity mode polarization direction, we show that the optical cavity can increase the reaction energy barrier by 10-20% or decrease the reaction barrier by ∼5%. By using first-principles methods, this work establishes strong light-matter coupling as a viable and practical route to alter and catalyze proton transfer reactions.


Asunto(s)
Protones , Teoría Cuántica , Catálisis
17.
J Phys Chem Lett ; 12(37): 9100-9107, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34520211

RESUMEN

In the field of polaritonic chemistry, strong light-matter interactions are used to alter chemical reactions inside optical cavities. To understand these processes, the development of reliable theoretical models is essential. While traditional methods have to balance accuracy and system size, new developments in quantum computing offer a path for accurate calculations on currently available quantum devices. Here, we introduce the quantum electrodynamics unitary coupled cluster (QED-UCC) method combined with the Variational Quantum Eigensolver algorithm, as well as the quantum electrodynamics equation-of-motion (QED-EOM) method formulated in the qubit basis that allow accurate calculations of ground-state and excited-state properties of strongly coupled light-matter systems suitable for quantum computers. These methods show excellent agreement with the exact reference results and can outperform their traditional counterparts when strong electronic correlations become significant. This work sets the stage for future developments of polaritonic quantum chemistry methods suitable for both classical and quantum computers.

18.
J Chem Theory Comput ; 17(8): 5110-5122, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260237

RESUMEN

The computational investigation of photochemical processes often entails the calculation of excited-state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons, thereby including the associated nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations. The multicomponent density functional theory (NEO-DFT) and time-dependent DFT (NEO-TDDFT) methods allow efficient calculations of ground and excited states, respectively. Herein, the analytical gradients are derived and implemented for the NEO-TDDFT method and the associated Tamm-Dancoff approximation (NEO-TDA). The programmable equations for these analytical gradients as well as the NEO-DFT analytical Hessian are provided. The NEO approach includes the anharmonic zero-point energy (ZPE) and density delocalization associated with the quantum protons as well as vibronic mixing in geometry optimizations and energy calculations of ground and excited states. The harmonic ZPE associated with the other nuclei can be computed via the NEO Hessian. This approach is used to compute the 0-0 adiabatic excitation energies for a set of nine small molecules with all protons quantized, exhibiting slight improvement over the conventional electronic approach. Geometry optimizations of two excited-state intramolecular proton-transfer systems, [2,2'-bipyridyl]-3-ol and [2,2'-bipyridyl]-3,3'-diol, are performed with one and two quantized protons, respectively. The NEO calculations for these systems produce electronically excited-state geometries with stronger intramolecular hydrogen bonds and similar relative stabilities compared to conventional electronic methods. This work provides the foundation for nonadiabatic dynamics simulations of fundamental processes such as photoinduced proton transfer and proton-coupled electron transfer.

20.
J Chem Theory Comput ; 17(6): 3252-3258, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945684

RESUMEN

The variational quantum eigensolver (VQE) algorithm combined with the unitary coupled cluster (UCC) ansatz has been developed for the quantum computation of molecular energies and wave functions within the Born-Oppenheimer approximation. Herein, this approach is extended to multicomponent systems to enable the quantum mechanical treatment of more than one type of particle, such as electrons and positrons or electrons and nuclei, without invoking the Born-Oppenheimer approximation. Specifically, we introduce the multicomponent unitary coupled cluster (mcUCC) method combined with the VQE algorithm for the calculation of ground-state energies and wave functions as well as the multicomponent equation-of-motion (mcEOM) method for the calculation of excitation energies. These methods are developed within the nuclear-electronic orbital (NEO) framework and are formulated in the qubit basis to enable implementations on quantum computers. Moreover, these methods are used to calculate the ground-state energy and excitation energies of positronium hydride, where both electrons and the positron are treated quantum mechanically, as well as the H2 molecule, where both electrons and one proton are treated quantum mechanically. These applications validate the implementation and provide benchmark data for future calculations. The errors due to Trotterization of the mcUCC ansatz are also analyzed. This formalism, as well as the accompanying computer code, will serve as the basis for applications to more complex multicomponent systems, such as simulations of photoinduced nonadiabatic molecular processes, on both classical and quantum computers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...