Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35332, 2024 01.
Article En | MEDLINE | ID: mdl-37728122

The development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with silver nanoparticles (AgNPs), and finally electrophoretic deposition (EPD) of a composite of chitosan (CS) and either polymethacrylate-based copolymer Eudragit E 100 (EE100) or poly(4-vinylpyridine) (P4VP) coating. The effects of each stage of this multi-step modification were examined in terms of morphology, roughness, wettability, corrosion resistance, coating-substrate adhesion, antibacterial properties, and osteoblast cell adhesion and proliferation. The results showed that the titanium surface formed nanotubes (inner diameter of 97 ± 12 nm, length of 342 ± 36 nm) subsequently covered with silver nanoparticles (with a diameter of 88 ± 8 nm). Further, the silver-decorated nanotubes were tightly coated with biopolymer films. Most of the applied modifications increased both the roughness and the surface contact angle of the samples. The deposition of biopolymer coatings resulted in reduced burst release of silver. The coated samples revealed potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. Total elimination (99.9%) of E. coli was recorded for a sample with CS/P4VP coating. Cytotoxicity results using hFOB 1.19, a human osteoblast cell line, showed that after 3 days the tested modifications did not affect the cellular growth according to the titanium control. The proposed innovative multilayer antibacterial coatings can be successful for titanium implants as effective postoperative anti-inflammation protection.


Chitosan , Metal Nanoparticles , Nanotubes , Polymethacrylic Acids , Polyvinyls , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Titanium/pharmacology , Titanium/chemistry , Corrosion , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Silver/pharmacology , Nanotubes/chemistry , Surface Properties
2.
J Biomed Mater Res B Appl Biomater ; 111(10): 1800-1812, 2023 10.
Article En | MEDLINE | ID: mdl-37255007

Metallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid or a carbon dioxide saturation process. The coatings were deposited using a voltage of 10 V for 1 min. The prepared coatings were examined using SEM, EDS, FTIR, and XPS techniques. In addition, the wettability of these surfaces, corrosion resistance, adhesion of the coatings to the metallic substrate, and their antimicrobial activity (E. coli, S. aureus) and cytocompatibility properties using the MTT and LDH assays were studied. The coatings produced tightly covered the metallic substrate. Spectroscopic studies confirmed that the peptide did not detach from the chitosan chain during electrophoretic deposition. All tested samples showed high corrosion resistance (corrosion current density measured in nA/cm2 ). The deposited coatings contributed to a significant increase in the antimicrobial activity of the samples against Gram-positive and Gram-negative bacteria (reduction in bacterial counts from 99% to, for CS-RGD-Acid and the S. aureus strain, total killing capacity). MTT and LDH results showed high compatibility with bone cells of the modified surfaces compared to the bare substrate (survival rates above 75% under indirect contact conditions and above 100% under direct contact conditions). However, the adhesion of the coatings was considered weak.


Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Anti-Bacterial Agents/pharmacology , Alloys/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Oligopeptides/pharmacology , Suspensions , Osteoblasts , Titanium/chemistry
3.
Materials (Basel) ; 15(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36363148

Titanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment, deposition of chitosan, biodegradable Eudragit 100 and poly(4-vinylpyridine (P4VP), carbon nanotubes, nanoparticles of TiO2, and chitosan with Pt (nano Pt) and polymeric dispersant. The open circuit potential, corrosion current density, and potential values were determined by potentiodynamic technique, and microstructures of the surface layers and coatings were characterized by scanning electron microscopy. The results show that despite the applied modifications, the corrosion current density still appears in the region of very low values of some nA/cm2. However, almost all surface modifications, designed principally for the improvement of biological properties, negatively influence corrosion resistance. The reasons for observed effects can vary, such as imperfections and permeability of some coatings or accelerated degradation of biodegradable deposits in simulated body fluids during electrochemical testing. Despite that, all coatings can be accepted for biological applications, and such corrosion testing results are presumed not to be of major importance for their applications in medicine.

4.
Biomater Adv ; 138: 212950, 2022 Jul.
Article En | MEDLINE | ID: mdl-35913239

To provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter on such a modified surface. To ensure a controlled release of the bactericidal substance, the samples were additionally coated with a pH-sensitive chitosan/Eudragit 100 coating, also exhibiting bactericidal properties. The modified titanium samples were characterized using SEM, EDS, AFM, Raman, and XPS techniques. The wettability, corrosion properties, adhesion of the coating to the substrate, the release of AgNPs into solutions simulating body fluids at different pH, and antibacterial properties were further investigated. The obtained composite coatings were hydrophilic, adjacent to the surface, and corrosion-resistant. An increase in the amount of silver released as ions or metallic particles into a simulated body fluid solution at acidic pH was observed for modified samples with the biopolymer coating after three days of exposure avoiding burst effect. The proposed modification was effective against both Gram-positive and Gram-negative bacteria.


Chitosan , Metal Nanoparticles , Nanotubes , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Coated Materials, Biocompatible/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Lasers , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Polymers , Polymethacrylic Acids , Silver/pharmacology , Titanium/pharmacology
5.
Materials (Basel) ; 14(16)2021 Aug 12.
Article En | MEDLINE | ID: mdl-34443056

Due to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the content of AgNPs, applied voltage, and time of deposition. The morphology, surface roughness, thickness, chemical and phase composition, wettability, mechanical properties, electrochemical properties, and silver release rate at different pH were investigated. Using lower values of deposition parameters, coatings with more homogeneous morphology were obtained. The prepared coatings were sensitive to the reduced pH environment.

6.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article En | MEDLINE | ID: mdl-33804677

The risk of an early inflammation after implantation surgery of titanium implants has caused the development of different antimicrobial measures. The present research is aimed at characterizing the effects of nanosilver and nanocopper dispersed in the nanohydroxyapatite coatings, deposited on the Ti13Zr13Nb alloy, and on the chemical and biological properties of the coatings. The one-stage deposition process was performed by the electrophoretic method at different contents of nanomaterials in suspension. The surface topography of the coatings was examined with scanning electron microscopy. The wettability was expressed as the water contact angle. The corrosion behavior was characterized by the potentiodynamic technique. The release rate of copper and silver into the simulated body fluid was investigated by atomic absorption spectrometry. The antibacterial efficiency was evaluated as the survivability and adhesion of the bacteria and the growth of the biofilm. The cytotoxicity was assessed for osteoblasts. The results demonstrate that silver and copper increase the corrosion resistance and hydrophilicity. Both elements together effectively kill bacteria and inhibit biofilm growth but appear to be toxic for osteoblasts. The obtained results show that the nanohydroxyapatite coatings doped with nanosilver and nanocopper in a one-stage electrophoretic process can be valuable for antibacterial coatings.


Alloys/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Metal Nanoparticles/chemistry , Titanium/chemistry , Biofilms/drug effects , Chemical Phenomena , Copper/chemistry , Corrosion , Electrophoresis , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Silver/chemistry , Surface Properties
7.
Materials (Basel) ; 14(7)2021 Mar 26.
Article En | MEDLINE | ID: mdl-33810612

In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.

8.
Materials (Basel) ; 12(22)2019 Nov 13.
Article En | MEDLINE | ID: mdl-31766219

Nowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of coatings was carried out for various amounts of nanoCu powder and various average particle sizes. Microstructure, topography, phase, and chemical composition were examined with scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Corrosion properties were determined by potentiodynamic polarization technique in simulated body fluid. Nanomechanical properties were determined based on nanoindentation and scratch tests. The wettability of coatings was defined by the contact angle. It was proven that nanoHAp coatings containing nanocopper, compared to nanoHAp coatings without nanometals, demonstrated smaller number of cracks, lower thickness, and higher nanomechanical properties. The influence of the content and the average size of nanoCu on the quality of the coatings was observed. All coatings exhibited hydrophilic properties. The deposition of nanohydroxyapatite coatings doped with nanocopper may be a promising way to improve the antibacterial properties and mechanical stability of coatings.

...